
An Introduction to Kalman Filter



Overview

• A conceptual view (scalar problem)

• Kalman Filter Formula

• Limitation of traditional Kalman Filter and 
imperfect solution

• Homework (if you are interested)



Conceptual View (One-dimension)
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Where am I? 

Estimate my speed,  I 
estimate I am at 
position       = 500km 
from my origin

Somewhat uncertain, 
Expressed with 
standard deviation  
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I also have a very old 
GPS, it tell me my 

position at y=600km,

with a standard 
deviation  

202 

km
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Combine both pieces of information to get the best estimation of my location.

600 km500 km

Somewhere between, but close to GPS location; why?

Model Observationax

fx



Mathematical Formulation



(1 )a fx ky k x  

is our best estimation with uncertainty 
k is the unknown coefficients

ax

We want to minimize the 
uncertainty , i.e. standard deviation 



Mathematical Formulation
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Mathematical Formulation
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Statistical View
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Your  prediction!

Uncertainty
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Best Estimation when 
combining your prediction 
and measurement

• Corrected mean is the new optimal estimate of position

• New uncertainty is smaller than either of the previous two variances



Your 
estimation

xf(i +T ) = Mi  i+T [xa(i)]

xa(i) = xf(i) + K[y(i) - xf(i)]Filter

xf(i +2T ) = Mi +T  i+2T [xa(i +T )]

xa(i +T ) = xf(i +T ) + K[y(i +T ) - xf(i +T )]

xf: forecast ;
xa: improved estimation; 
y: measurement;
K: Gain;                         
i, i+T: time step
T: assimilation interval
Mi  i+T: model integration

xf(i) xa(i)
i, i +T

xf(i +T )
xa(i +T )
i +T, i +2T xf(i +2T )

Flow chart of the process---doing previously repeatedly

GPS 
measurements  t = i t = i +T
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Without and With assimilation
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Long-term prediction without 
assimilation?

Larger and larger error and uncertainty



Kalman Filter Introduction

In general case: not scalar

1 1 1 1 1k k k k k k

k k k k

x M x B u v

y H x w
      

 
 is the -dimensional state vector (unknown)

 is the  -dimensional input vector (known)

 is the -dimensional output vector (known, measured)

, ,  are appropriately dimensioned system matrices

k

k

k

k k k

x n

u m

y p

M B H  (known)

,  are zero-mean, white Gaussian noise with (known) 

                  covariance matrices ( ), ( )
k kv w

Q k R k

Given the linear dynamical system:

the Kalman Filter is a recursion that provides the 
“best” estimate of the state vector x.
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In general case :not a scalar
• Kalman Filter

Step 1. Model prediction: xf is estimate based on

step 3:correction of model state  by KF analysis
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Noise (v) with covariance Q
this is your estimation of the 

error propagation.

Step 2. Calculate Kalman Gain:

this is your new estimation of 
the error covariance, reduced 
from           to f

kP a
kP



In general case: not a scalar
xf: forecast [N1] ;  a state vector ( a scalar before : your prediction of your location 1-D)
xa: (analysis) [N1] ; a state vector (a scalar before:  1-D location)
y: observation [No1] ;  a observationa vector (a scalar before: gps measurement 
location 1-D)
K: Kalman gain [NNo] ;  a matrix (a scalar before :                             )

2
2

2 2
1 2

k


 



2
1

2 2
1 2

( )a f fx x y x


 
  



analysis model Gain innovation

Observation

( )
f T

a f f
f T

P H
x x y Hx

HP H R
  



H is the observation 
operator , interpolate the xf

to y  ,this is because the 
observation size are 
usually smaller than your 
model  state vector



• If we are sure about measurements:
– Measurement error covariance (R) decreases to zero

– K decreases and weights residual more heavily than prediction

• If we are sure about prediction
– Prediction error covariance P f decreases to zero

– K increases and weights prediction more heavily than residual
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General case 



Your 
estimation

xf(i +T ) = Mi  i+T [xa(i)]

xa(i) = xf(i) + K[y(i) - H xf(i)]Filter

xf(i +2T ) = Mi +T  i+2T [xa(i +T )]

xa(i +T ) = xf(i +T ) + K[y(i +T ) - H xf(i +T )]

xf: forecast [N1] ; model prediction
Xa: KF analysis condition [N1] ; 
y: observation [No1] ; from field measurements
K: Kalman gain
T: assimilation interval
Mi  i+T: model integration from time i to i+ T

xf(i) xa(i)
i, i +T

xf(i +T )
xa(i +T )
i +T, i +2T xf(i +2T )

Flow chart of the process---doing previously repeatedly

Measurements y  t = i t = i +T
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Summary
• Recursive data processing algorithm

• Generates optimal estimate of desired quantities 
given the set of measurements

• Optimal?
– For linear system and white Gaussian errors, Kalman filter 

is “best” estimate based on all previous measurements

– For non-linear system optimality is ‘qualified’

• Recursive?
– Doesn’t need to store all previous measurements and 

reprocess all data each time step



Limitation
• Weak nonlinear system (Extended Kalman 

Filter)

• Computation loads
– P=O(1e6) x O(1e6) matrix

– Reduced Rank Kalman Filter (project to leading 
error subspace O(1e2) from EOF analysis and 
doing KF in model error subspace then project 
back)

– Ensemble Kalman Filter (Represents error 
statistics         using an ensemble of model states.)

• (see Chen etc. 2009 for coastal ocean idealized case)
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Homework (if you are interested)
• Consider you are in a room: your estimation is 

the temperature is constant (you can have your 
first guess with any temperature)

• You have a thermometer,  with a known 
variance (uncertainty)         = 1

• We know the true room temperature is 10 oC 
with some perturbation, variance              0.25

• Using matlab/others to construct a KF model, 
show your model states analysis and error 
variance convergence in KF

• Assuming all error distribution is Gaussian
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Analysis state is improved, and 
error variance converged
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Overestimate the model error 
variance by a factor of 10 
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Underestimate the model error 
variance by a factor of 10
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