An Introduction to Kalman Filter




Overview

A conceptual view (scalar problem)
Kalman Filter Formula

Limitation of traditional Kalman Filter and
imperfect solution

Homework (if you are interested)




Conceptual View (One-dimension)

Model Where am I? — xa Observation

I also have a very old
GPS, it tell me my
position at y=600km
with a standard

Estimate my speed, I
estimate I am at
position x/ = 500km
from my origin

deviation
Somewhat uncertain,
Expressed with o, =20 km
standard deviation
O, = 50 km

Combine both pieces of information to get the best estimation of my location.

Somewhere between, but close to GPS location; why?

s00km T 600km
< O o—o >




Mathematical Formulation

x* =ky+(1-k)x’

a 1s our best estimation with uncertainty
k 1s the unknown coetficients

X

We want to minimize the
uncertainty , 1.e. standard deviation (¢




Mathematical Formulation

o’ =E[(x* —x")’ = E[(ky + (1-k)x’ —x")°]

=E[(k(y—x)+1-k)(x" —x"))*]

Here we
= K2E[(y—x)* 1+ 1=k’ E[(x" —x")*] assume the
=Koy +(L-k)' 0} = (0] + o)k 207k +o7 | V-0
2~ 0 Give you the minimal O
ddiz =2(cl+0)k-20] =0
=> k = o)

2 2
o, +0,




Mathematical Formulation

52 = CZ 1 O 22 — e 1_2 — 12 + 12 Uncertainty was reduced !
o, +0, o o o, 0,
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Statistical View
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Your prediction!



GPS measurement !
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Best Estimation when
combining your prediction
and measurement
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« Corrected mean is the new optimal estimate of position
« New uncertainty is smaller than either of the previous two variances



Flow chart of the process---doing previously repeatedly

GPS . .

measurements !~ ! t=i+AT
Filter x2(i) = (i) + K[y(i) - x{()] X3(i +AT) = xf(i +AT) + K[y(i +AT) - x'(i +AT)]

ad ad /
: a(; . X3(i +AT .
xf(i) i,)§ g‘)T xf(i +AT) ; +ST’ ; +2) AT xf(i +2A4T)

Your [ +AT) = M,y X200 X +2AT) = My, gy _, 127 [X°( +AT)]
estimation

xf: forecast ;

x2: improved estimation;
y: measurement;

K. Gain;

i, i+AT: time step

AT:

Mi—)

assimilation interval
47~ Model integration




Without and With assimilation
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Long-term prediction without
assimilation?

Larger and larger error and uncertainty

|

fx(r)|;:(r|}:_(rz)(xh| )
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Maybeck, Peter 8., Stochastic Models, Estimation, and Control, Vol. |



In general case: not scalar

Given the linear dynamical system:
Xe =M X + By +v
Vi =Hx +w,
x, 1S the n-dimensional state vector (unknown)
u, 1s the m -dimensional input vector (known)
¥, 1s the p-dimensional output vector (known, measured)
M,,B,,H, are appropriately dimensioned system matrices (known)
v,,w, are zero-mean, white Gaussian noise with (known)

covariance matrices Q(k), R(k)

the Kalman Filter is a recursion that provides the
“best” estimate of the state vector x.



In general case :not a scalar
« Kalman Filter

Step 1. Model prediction: x' is estimate based on

=Mx,_,+Bu,+v, Noise (v) with covariance Q
this is your estimation of the
f a T
Pk — MPk—lM +0 error propagation.
Step 2. Calculate Kalman Gain: P
i
(HP'H" +R)

step 3:correction of model state by KF analysis

_ f
xk xk +K(y, — Hx})
this is your new estimation of
_ f
k — (] - KH)Pk the error covarlance reduced

from P to Pa



In general case: not a scalar

xf: forecast [Nx1] ; a state vector ( a scalar before : your prediction of your location 1-D)
x2: (analysis) [Nx1] ; a state vector (a scalar before: 1-D location)

y: observation [N,x1] ; a observationa vector (a scalar before: gps measurement
location 1-D) k= O'

K: Kalman gain [NxN_]; a matrix (a scalar before : ol +0;)

2 / Observation

v =y =T (o)

(71 + o, 2
H is the observation

analysis model Galn innovation operator , interpolate the x'
toy ,this is because the
l observation size are
PfH usually smaller than your
( = Hx S/ ) model state vector

HPf H"+R



2

O 2
Scalar case x¢ = xf + ! (y — xf) K = O,
2 4 52 =—
O, 70, o, +0,
General case PfHT
x =x' + — (y—Hx')
HP " H" +R
P'H'
K = 7
* [f we are sure about measurements: HP'H™ + R
— Measurement error covariance (R) decreases to zero
— K decreases and weights residual more heavily than prediction
lim K, = HL.

. R,—0
« If we are sure about prediction -"

— Prediction error covariance P f decreases to zero

— K increases and weights prediction more heavily than residual

lim KA_ = £
P,—0



Flow chart of the process---doing previously repeatedly

Measurementsy ¢=i

t=1i+AT

l

l

v

Filter xa(i) = x'(i) + KLy(i) - H x'(3)] x3(i +AT) = X'(i +AT) + K[y(i +AT) - H x/(i +AT)]
ad ad /
: a(; . X3(i +AT .
xf(i) i,)§ g‘)T xf(i +AT) ; +ST’ ; +2) AT xf(i +2A4T)
Your XH(i +AT) = M, _, 7 [x2(0)] XH(i +24T) = M, 47, suur [X2(i +AT)]
estimation

xf: forecast [Nx1] ; model prediction
X2: KF analysis condition [Nx1] ;

y: observation [N x1] ; from field measurements
K: Kalman gain

AT: assimilation interval
M. _, ;. sr- model integration from time i to i+ AT



Summary

Recursive data processing algorithm

Generates optimal estimate of desired quantities
given the set of measurements
Optimal?

— For linear system and white Gaussian errors, Kalman filter
1s “best” estimate based on all previous measurements

— For non-linear system optimality 1s ‘qualified’

Recursive?

— Doesn’t need to store all previous measurements and
reprocess all data each time step



Limitation

* Weak nonlinear system (Extended Kalman

Filter)

« Computation loads P H"

— P=0(1e6) x O(1eb
— Reduced Rank Kal

K = —
) matrix AP H" +R

man Filter (project to leading

error subspace O(le2) from EOF analysis and

doing KF 1n mode]
back)

| error subspace then project

— Ensemble Kalman Filter (Represents error
statistics Pf using an ensemble of model states.)

* (see Chen etc. 2009 for ¢

oastal ocean idealized case)



Homework (if you are interested)

Consider you are 1n a room: your estimation 1is
the temperature 1s constant (you can have your
first guess with any temperature)

You have a thermometer, with a known
variance (uncertainty) o 12 =1

We know the true room temperature izs 10 °C
with some perturbation, variance O , =0.25

Using matlab/others to construct a KF model,
show your model states analysis and error
variance convergence in KF

Assuming all error distribution is Gaussian



Analysis state Is improved, and
error variance converged
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Overestimate the model error
variance by a factor of 10

eor variance estimation
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Underestimate the model error
variance by a factor of 10

10 1 1 1 eror \ariance estimation
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