
Why do we need the data assimilation?

• Models are not perfect. Most of ocean models even do not
resolve the realistic world in both time and space scales.

• Data are limited in space and time, and also at most times they
are not accurate enough.

• Increase needs for the ocean forecast, particularly in coastal
oceans.

How could we achieve our goal? Does it achievable? What 
critical points do we need consider? 

MAR513-Lecture 6: Data Assimilation



• The model should be capable of reproducing the right physics
and simulating the fields of currents and water properties with a
certain accuracy. Data assimilation should be used to improve the
accuracy rather than to add additional dynamics to the system.
This is particularly true for the forecast application.

• Data is usually insufficient; the data assimilation does not always
work as expected.

• Advanced data assimilation methods usually require a huge
computational power.

• Any data assimilation method must undergo rigorous reliability
testing to ensure its ability to enhance the simulation, a process
commonly referred to as “twin experiments.”



Data Assimilation Methods

1. Nudging-directly merge model-predicted values to observation 
given a priori statistical assumption about the model noise and 
errors in the observation data

2. Optimal interpolation (OI)-uses the error covariance of the
observations and model predictions to find their most likely linear
combination. OI requires a priori statistical assumptions of the
model noise and observational errors

3. Adjoint (variational) methods-based on control theory, in which a
cost function, defined by the difference between model-derived
and measured quantities, is minimized in a least-square sense
under the constraint that the governing equations of the model
remain satisfied

4. Kalman filters (RRKF, EnKF, EnSKF, EnTKF, SEIK)-the most 
sophisticated statistical approaches through the Kalman gain. 



Nudging method

α(x,y,z,t) is a variable selected to be assimilated;
F(α, x,y,z,t) is the sum of all the terms in the governing equation of α(x,y,z,t);
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where αo is the observed value; αm is the model predicted value; N is the number
of observational points within the search area; γi is the data quality factor at the ith
observational point with a range from 0 to 1; Ga is the nudging factor that keeps
the nudging term to be scaled by the slowly physical adjustment process. Ga must
satisfy the numerical stability criterion given by

Ga <1/Δt

Wi (x,y,z,t) is a product of horizontal, vertical, temporal and directional weight
functions given as

Wi(x,y,z,t) = wxy wσ wt wθ



Weight functions
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R is the search radius
ro is the distance from the location where 
the data exist

Ro is the vertical search range

Tw is the half  assimilation window 

Δθ is the directional difference between the
local isobath and the computational point
with a c1 constant ranging from 0.05 to 0.5.



The OI method
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ˆ P × ˆ a = ˆ f 
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Note:



Adjoint Assimilation Methods

¶ x

¶t
= F(x,c)

The cost function( to measure the “distance” (error) between the observations and 
model prediction)  is defined as 



The Lagrange function is defined as 
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[note, (x-xo)2 = (x-xo)(x-xo)T; λ is a matrix array called the Lagrange multipliers for 
X (also denoted as adjoint variables)]



Forward model




