MARb513-Lecture 6: Data Assimilation

Why do we need the data assimilation?

« Models are not perfect. Most of ocean models even do not
resolve the realistic world in both time and space scales.

« Data are limited in space and time, and also at most times they
are not accurate enough.

 Increase needs for the ocean forecast, particularly in coastal
oceans.

How could we achieve our goal? Does it achievable? What
critical points do we need consider?



The model should be capable of reproducing the right physics
and simulating the fields of currents and water properties with a
certain accuracy. Data assimilation should be used to improve the
accuracy rather than to add additional dynamics to the system.
This is particularly true for the forecast application.

Data is usually insufficient; the data assimilation does not always
work as expected.

Advanced data assimilation methods usually require a huge
computational power.

Any data assimilation method must undergo rigorous reliability
testing to ensure its ability to enhance the simulation, a process
commonly referred to as “twin experiments.”



Data Assimilation Methods

Nudging-directly merge model-predicted values to observation
given a priori statistical assumption about the model noise and
errors in the observation data

Optimal interpolation (Ol)-uses the error covariance of the
observations and model predictions to find their most likely linear
combination. Ol requires a priori statistical assumptions of the
model noise and observational errors

Adjoint (variational) methods-based on control theory, in which a
cost function, defined by the difference between model-derived
and measured quantities, is minimized in a least-square sense
under the constraint that the governing equations of the model
remain satisfied

Kalman filters (RRKF, EnKF, EnSKF, EnTKF, SEIK)-the most
sophisticated statistical approaches through the Kalman gain.



Nudging method

a(x,y,z,t) is a variable selected to be assimilated;
F(a, x,y,z,t) is the sum of all the terms in the governing equation of a(x,y,z,t);
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where a, is the observed value; a,, is the model predicted value; N is the number
of observational points within the search area; y, is the data quality factor at the ith
observational point with a range from 0 to 1; G, is the nudging factor that keeps
the nudging term to be scaled by the slowly physical adjustment process. G, must
satisfy the numerical stability criterion given by

G, <1/At

W. (x,y,z,t) is a product of horizontal, vertical, temporal and directional weight
functions given as
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Weight functions
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with a ¢, constant ranging from 0.05 to 0.5.



The Ol method

Let X, X and X be the model forecast, assimilated (analysis) and observed values

of a model variable X', respectively, and assume that they satisfy a linear relationship
given as
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where M is the total data points involved in the optimal interpolation for X at a node

point.

Defining that the true value of X is X, at the assimilated node and X, at the kth
observed point,e, =X 6 -X;je, =X, -X;;e,, =X, -X;,;ande,, =X, - X;,,
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the analysis error e, is equal to
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The analysis error covariance P, =e’, which is given as
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In the least square fitting method, the error in e, must be a minimum when the first

differentiation condition of 9P, / da, =0 1s satisfied, 1.e.,
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Assuming that e, is not correlated with e, , , then we have
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This can be written in matrix form as
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When the observational and forecast error covariance values are known or specified,
parameter a, can be determined by using a state-of-the-art linear algebraic equation
solver to solve the matrix.



In real applications, for simplification, we can assume that the observational errors
are zero and the forecast error covariance satisfies a normal distribution given by
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where 7, 1s the horizontal distance between iand k points and d 1s the correlation radius.

With this approach, the OI scheme should be very similar to the nudging data
assimilation scheme.

Note:

The nudging and OI data assimilation methods are practical approaches for the
purpose of model application to the real-time simulation and assimilation. However, they

lack rigorous scientific support and are not generally useful for sensitivity studies of
model parameters.



Adjoint Assimilation Methods

The adjoint data assimilation 1s conducted using a variational method. The governing
equations of the ocean circulation model can be written in the form of vectors as
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where

X 1S a matrix array consisting of dependent variables such as u, v, w, C, T, and s;

F' 1s a nonlinear operator including the advective, Coriolis, pressure and diffusive terms
for the momentum equations and advective and diffusive terms for temperature and
salinity equations;

¢ 1S a matrix array containing the model parameters such as drag coefficient, light
attenuation lengths, and boundary and initial conditions.

The cost function( to measure the “distance” (error) between the observations and
model prediction) 1s defined as
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where x, and ¢, are the observed vectors for dependent variables and model
parameters, respectively, and K and K, are validity coefficients, €2 1s the numerical

computational domain; ¢ represents time and ( 7;,7,) 1s the time integration window.



The Lagrange function is defined as

L(x,A
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[note, (x-x,)? = (x-x,)(x-x,)"; A is a matrix array called the Lagrange multipliers for
X (also denoted as adjoint variables)]

The variational method used in the adjoint data assimilation model attempts to find the

solution ofx with a minimum value of L with respect of 4,x, and ¢ in term of least
square fitting, i.e.,
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This condition 1s equivalent to solving the Lagrange-Euler equations that satisfy the
constraints in the form of
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