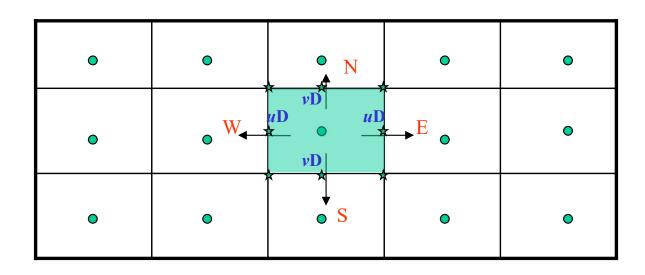
# **MAR513 Lecture 5: Finite-Volume Methods**

Unlike finite-difference and finite-element methods, the computational domain in the finite-volume methods is divided into many control volumes (CV) and the governing equations are solved in its integral form in individual control volumes.

For example:

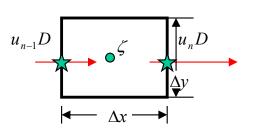
$$\iint_{\Omega} \left[ \frac{\partial \zeta}{\partial t} + \nabla \cdot (\vec{v}D) \right] dx \, dy = 0 \Rightarrow \frac{\partial \zeta}{\partial t} = -\frac{1}{\Omega} \iint_{s} v_{n} D ds \tag{7.1}$$

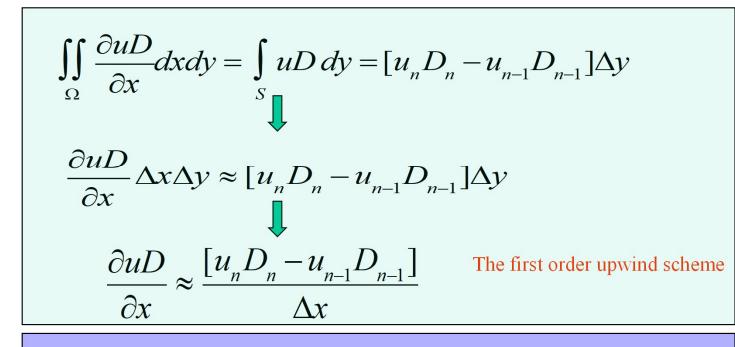
Structured grids



- 1. Assign the elevation at the center of each rectangular control volume;
- 2. Define that outflow is positive and inflow is negative;
- 3. Calculate the net flux

# Approximation of volume integrals





$$\begin{array}{c|cccc}
n-1 & n & n+1 \\
\bullet & \bullet & \bullet \\
u_{n-1}D & u_nD & u_{n+1}D
\end{array}$$

$$\iint_{\Omega} \frac{\partial uD}{\partial x} dx dy = \int_{S} uD \, dy = \left[\frac{u_{n+1}D_{n+1} + u_{n}D_{n}}{2} - \frac{u_{n}D_{n} + u_{n-1}D_{n-1}}{2}\right] \Delta y$$

$$= \frac{\Delta y}{2} (u_{n+1}D_{n+1} - u_{n-1}D_{n-1})$$

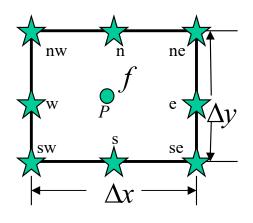
$$\frac{\partial uD}{\partial x} \Delta x \Delta y \approx \frac{\Delta y}{2} (u_{n+1}D_{n+1} - u_{n-1}D_{n-1})$$

$$\downarrow$$

$$\frac{\partial uD}{\partial x} \approx \frac{u_{n+1}D_{n+1} - u_{n-1}D_{n-1}}{2\Delta x}$$
The second order central scheme

# Consider an arbitrary function like

$$F = \iint f \, ds$$



On the east side, for the first order approximation,

$$F_e = f_e \Delta y$$

For the second order approximation,

$$F_e = \frac{1}{2}(f_{se} + f_{ne})\Delta y$$

For the fourth order approximation,

$$F_e = \frac{\Delta y}{6} (f_{se} + 4f_e + f_{ne})$$

Consider an arbitrary function like

$$F = \iint_{\Omega} f d\Omega = \bar{f} \Delta x \Delta y$$

For the first order approximation

$$F = f_{P} \Delta x \Delta y$$

For the second order approximation,

$$F = \overline{f} \Delta x \Delta y$$

The fourth order approximation can be obtained by using the bi-quadratic shape funcion:

$$f(x,y) = a_o + a_1 x + a_2 y + a_3 x^2 + a_4 y^2 + a_5 xy + a_6 x^2 y + a_7 xy^2 + a_8 x^2 y^2$$

Need 9 coefficients, which can determined by fitting the function to the value of f at 9 locations (nw,w,sw, n, p,s, ne,e,and se).

$$F = \Delta x \Delta y \left[ a_o + \frac{a_3}{12} (\Delta x)^2 + \frac{a_4}{12} (\Delta y)^2 + \frac{a_8}{144} (\Delta x)^2 (\Delta y)^2 \right]$$

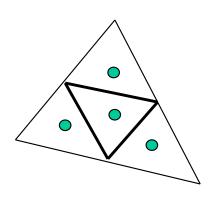
$$= \frac{\Delta x \Delta y}{36} (16f_p + 4f_s + 4f_n + 4f_w + 4f_e + f_{se} + f_{sw} + f_{ne} + f_{nw})$$

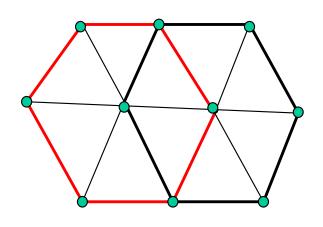
For the cell-centered grids, the value at P point is known, but values at other points must be obtained by interpolation from surrounding cell-centered nodes.

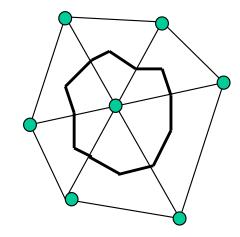
### Comments;

Structured grid finite-volume model is a special type of the finite-difference methods and they always can convert from one to another. So, little efforts need to make to convert a finite-difference model to a finite-volume model under structured grids.

# 3. Popular unstructured triangular FVM grid in CFD:







1. Cell-centered

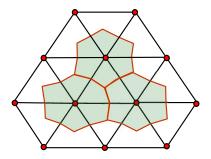
2. Cell-vertex overlapping

3. Cell-vertex median

# **Characteristics of the oceanic motion:**

- Free surface----How to calculate accurately the integral form of the surface pressure gradient forcing?
- Steep bottom topography----How to ensure the mass conservation in a two mode model system?
- Open boundary conditions----How to minimize the wave energy reflection at open boundaries?

Cell vertex median grid



A Grid: All variables  $(\zeta_{,,u,v,\omega}, \theta, s..)$  at nodes

### Advantage:

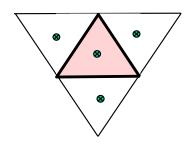
- 1) Simple
- 2) Guarantee the mass conservation for tracers

## Disadvantage:

The accuracy of the surface elevation gradient forcing is sensitive to the shape of the control element (due to interpolation)

Hard to ensure the mass conservation at open boundaries

Cell-centered



B Grid: All variables  $(\zeta_{,,}u,v, \omega, \theta, s..)$  at centroids

## Advantage:

- 1) Simple
- 2) Better to advection calculation

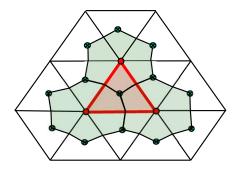
# Disadvantage:

Hard to guarantee The accuracy of the surface elevation gradient forcing

Hard to ensure the mass conservation at open boundaries

Hard to ensure the mass conservation for tracer calculation

Cell-vertex-centered

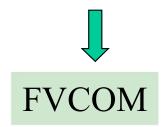


C Grid:

- $\bullet$   $\zeta, \omega, \theta, s, K_{\rm m}, K_{\rm h}...$
- $\otimes \overline{u}, \overline{v}, u, v$

# Advantage:

- Combine the best of A and B Grids;
- Easy to ensure the mass conservation for tracers
- Easy to introduce the mass conservative open boundary conditions



# 1. Advection Scheme

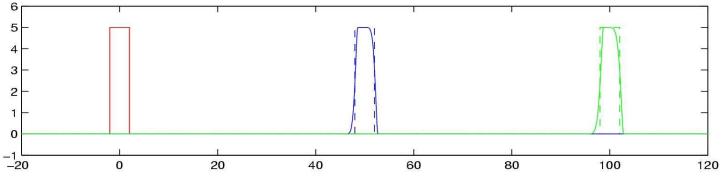
$$\frac{\partial F}{\partial t} + C \frac{\partial F}{\partial x} = 0 \qquad F(x,0) = \begin{cases} 5, & -2 \le x \le 2 \\ 0, & otherwise \end{cases}$$
 and 
$$\Delta t = 0$$
Upwind difference in the control of the con

and C = 1

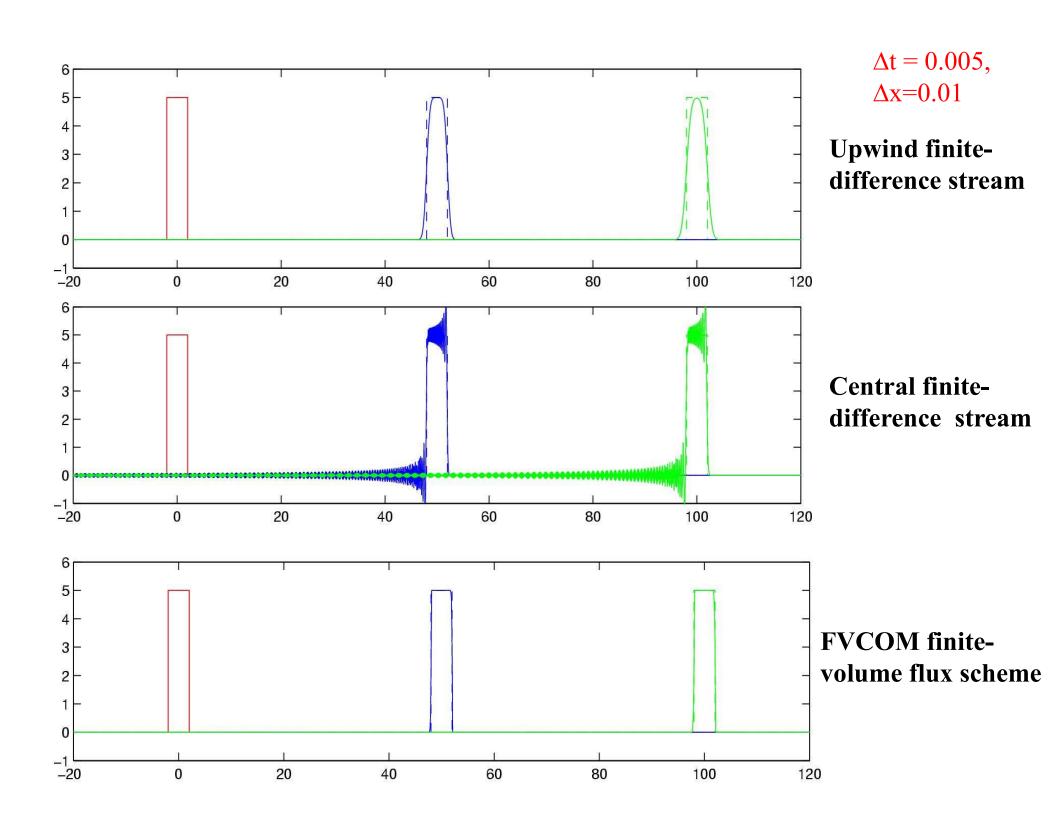
 $\Delta t = 0.05, \ \Delta x = 0.1$ 

**Upwind finite- difference stream** 

Central finitedifference stream



**FVCOM finite-volume flux scheme** 



# Wind-induced oscillation

Wind is suddenly imposed at initial

# Linear, non-dimensional equations:

$$\frac{\partial u}{\partial t} - v = -\lambda \frac{\partial \zeta}{\partial r}$$

$$\frac{\partial v}{\partial t} + u = -\lambda \frac{\partial \zeta}{r \partial \theta}$$

$$\frac{\partial \zeta}{\partial t} + \frac{\lambda}{r} \left[ \frac{\partial (ru)}{\partial r} + \frac{\partial v}{\partial \theta} \right] = 0$$

 $\frac{\partial \zeta}{\partial t} + \frac{\lambda}{r} \left[ \frac{\partial (ru)}{\partial r} + \frac{\partial v}{\partial \theta} \right] = 0$ 

where 
$$\lambda = \frac{\sqrt{gd}}{r_o f}; \zeta = \eta - \hat{\eta}, \hat{\eta} = \frac{\tau_o r \cos \theta}{\lambda^4}; \tau_o = \frac{g\tau}{r_o^3 f^4}$$

and 
$$u|_{r=1} = 0; (u, v, \xi)_{r=0} \rightarrow finite; u|_{t=0} = v|_{t=0} = 0; \xi|_{t=0} = -\hat{\eta}(r, \theta)$$

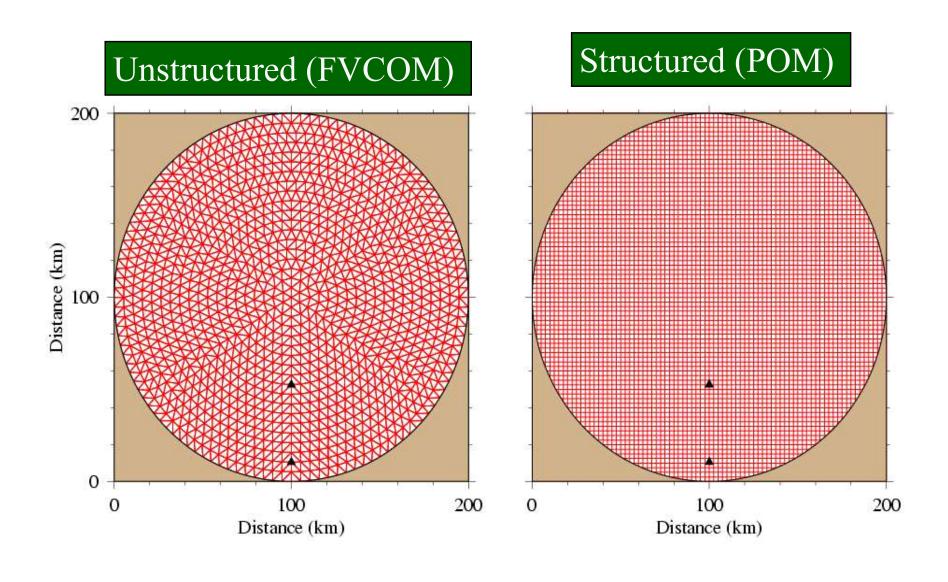
# Wind $r_{o}=67.5 \text{ km}$ d=75 m

# Solution:

$$\begin{split} &\eta(r,\theta,t) = \frac{\tau_o}{\lambda^4} [A_o(r)\cos\theta + \sum_{k=1}^\infty a_k A_k(r)\cos(\theta - \sigma_k t)] \\ &u(r,\theta,t) = \frac{\tau_o}{\lambda^3} [(\frac{A_o(r)}{r} - 1)\sin\theta - \sum_{k=1}^\infty b_k F_k(r)\sin(\theta - \sigma_k t)] \\ &v(r,\theta,t) = \frac{\tau_o}{\lambda^3} [(\frac{dA_o(r)}{dr} - 1)\cos\theta - \sum_{k=1}^\infty b_k G_k(r)\cos(\theta - \sigma_k t)] \end{split}$$

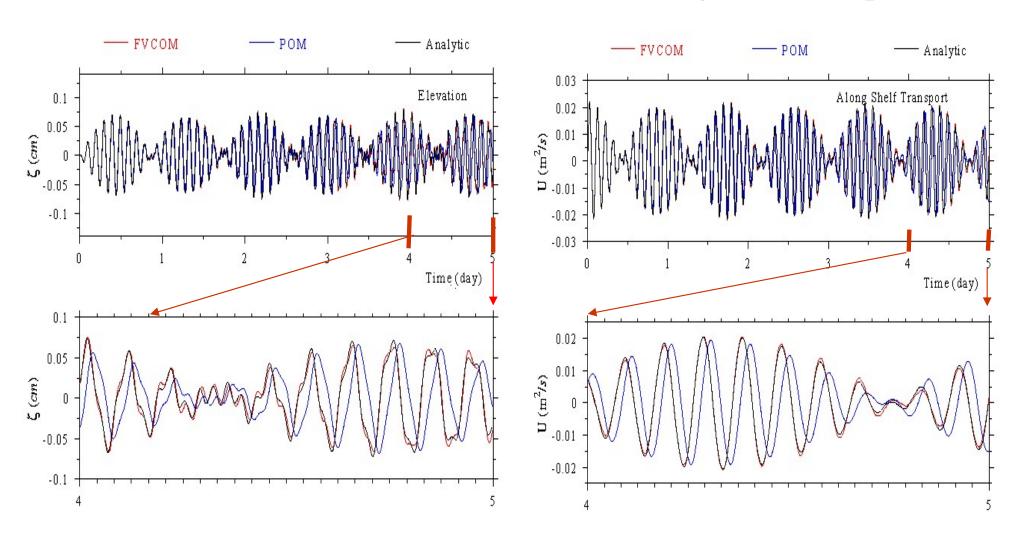
# Reference:

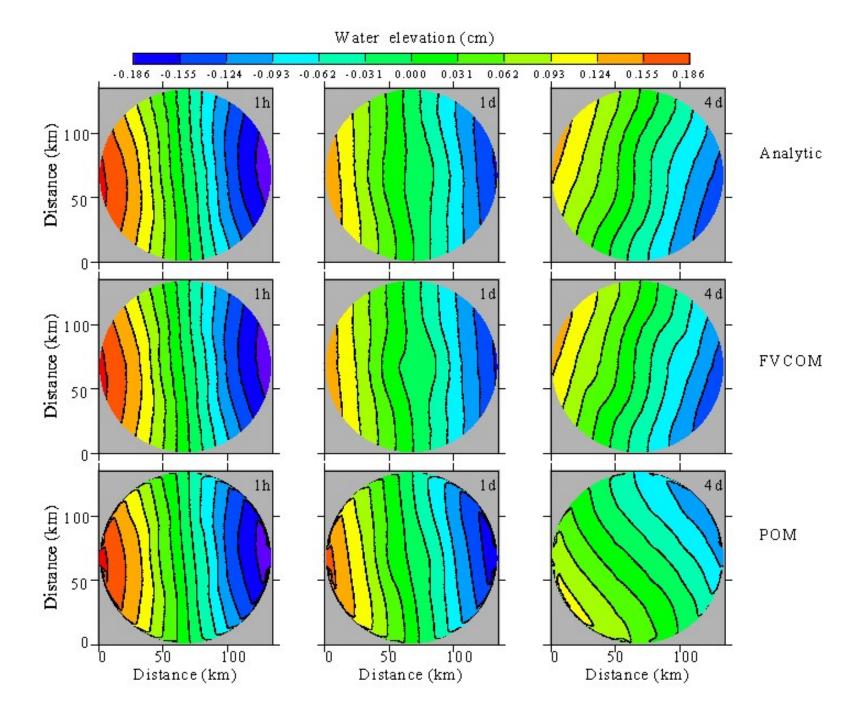
Csanady (1968) Birchfield (1969)



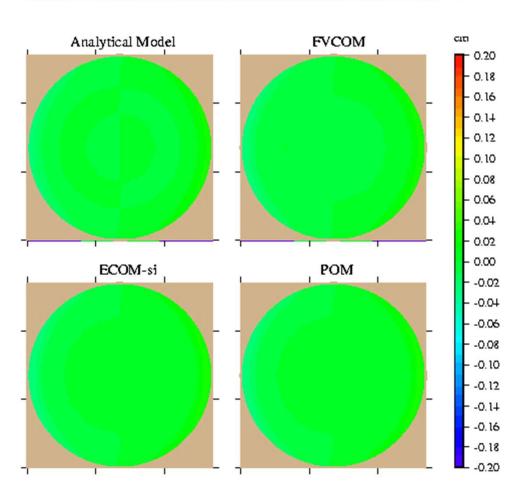
# Water elevation

# Alongshore transport



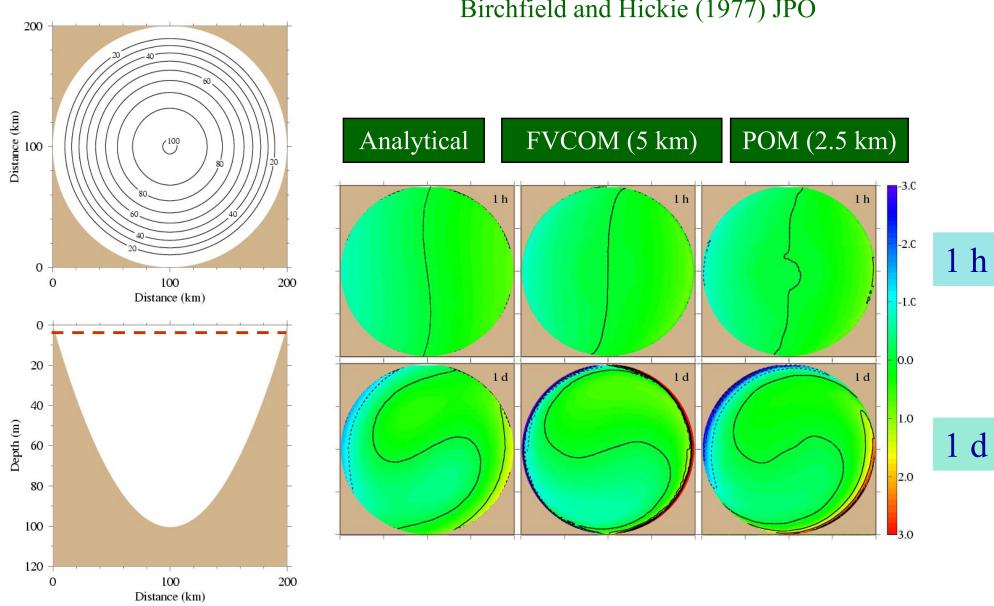


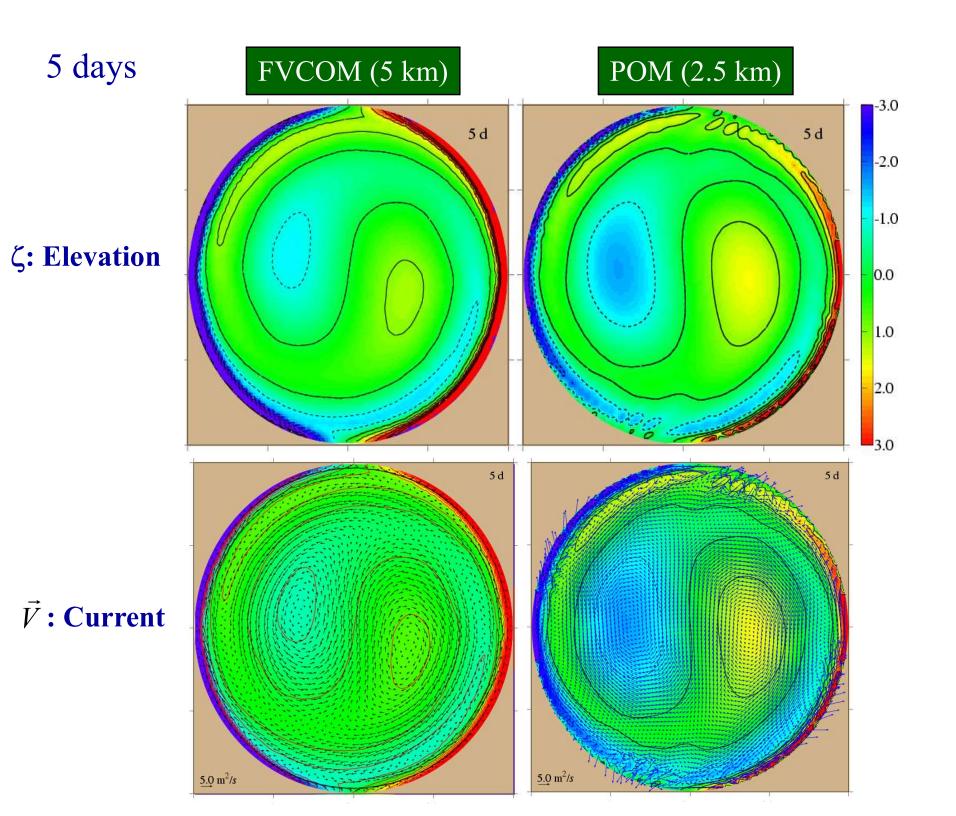


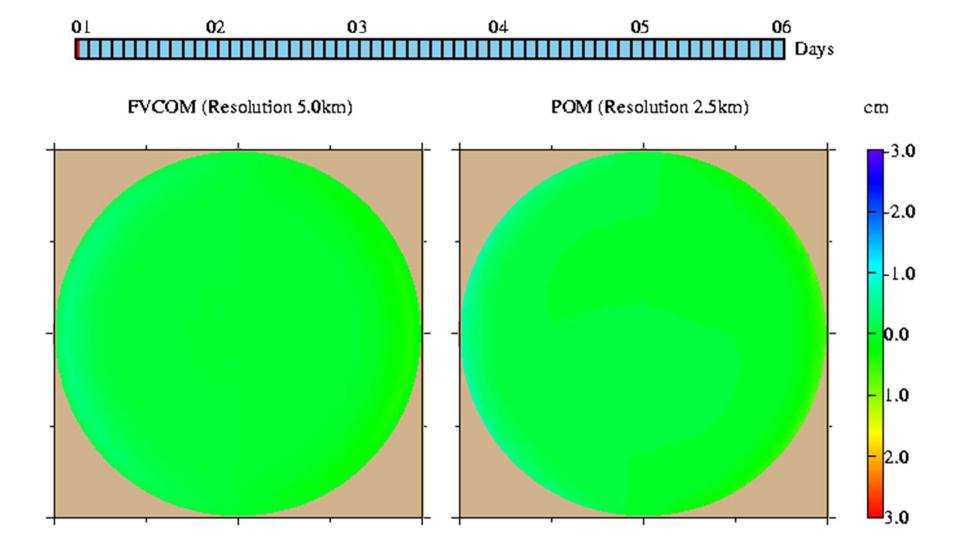


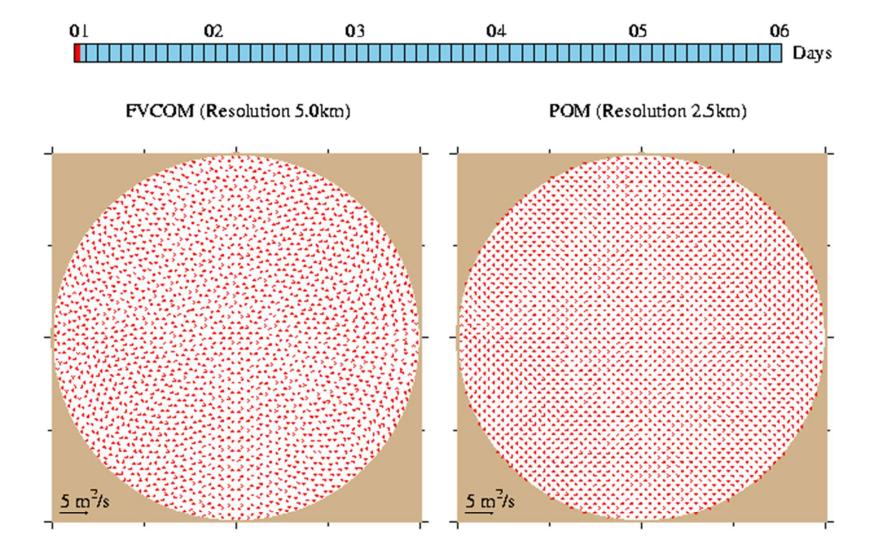
# Radial mode: k=1, 2: gravity waves, k=3: topographic wave

Birchfield and Hickie (1977) JPO



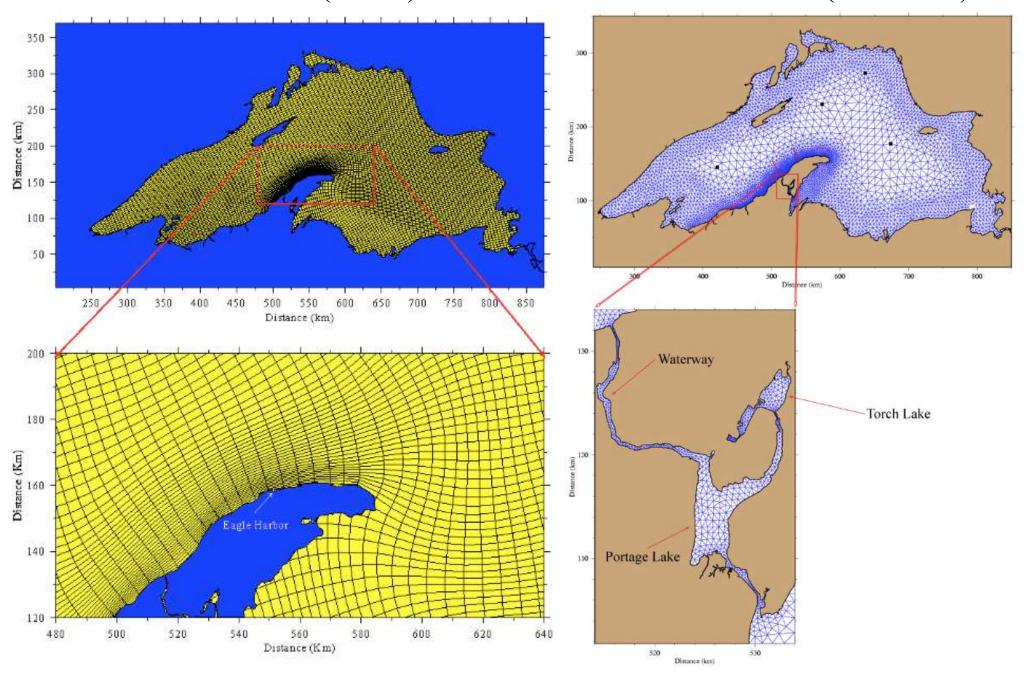


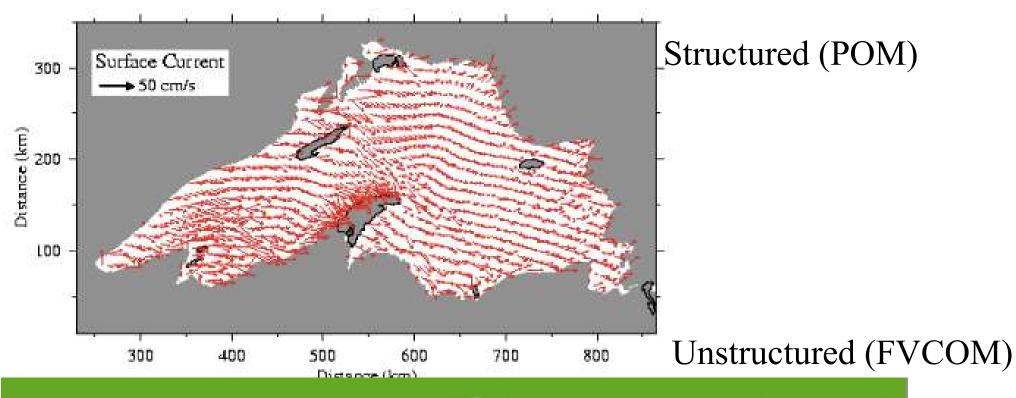




# Structured (POM)

# Unstructured (FVCOM)



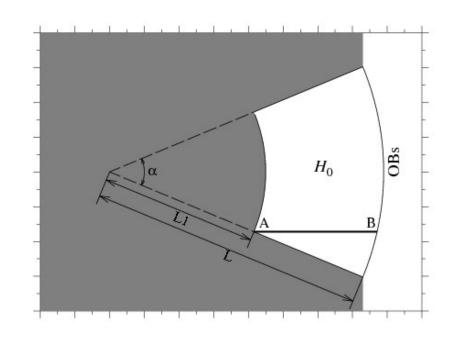




# Tidal Resonance in A Semi-closed Channel

# Consider a 2-D linear, non-rotated initial problem such as

$$\begin{cases} \frac{\partial V_r}{\partial t} + g \frac{\partial \eta}{\partial r} = 0 & \frac{\partial V_{\theta}}{\partial t} + g \frac{\partial \eta}{r \partial \theta} = 0 \\ \frac{\partial \eta}{\partial t} + \frac{\partial r V_r H_0}{r \partial r} + \frac{\partial V_{\theta} H_0}{r \partial \theta} = 0 \end{cases}$$



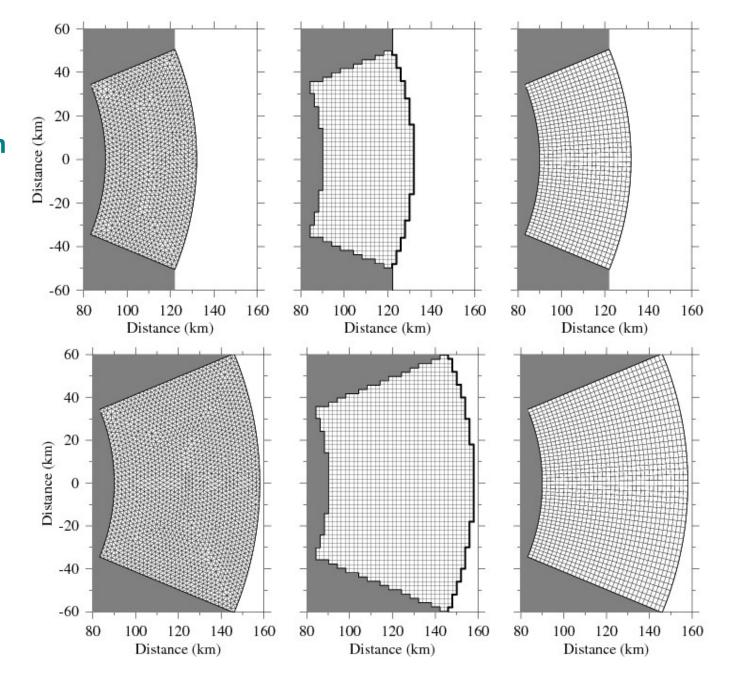
### The solution:

$$\eta_0(r,\theta) = \left[c_1 J_{\gamma_m} \left(r \frac{\omega}{\sqrt{gH_0}}\right) + c_2 Y_{\gamma_m} \left(r \frac{\omega}{\sqrt{gH_0}}\right)\right] \cdot \cos\left[\frac{m\pi(\theta + \alpha/2)}{\alpha}\right]$$

### where

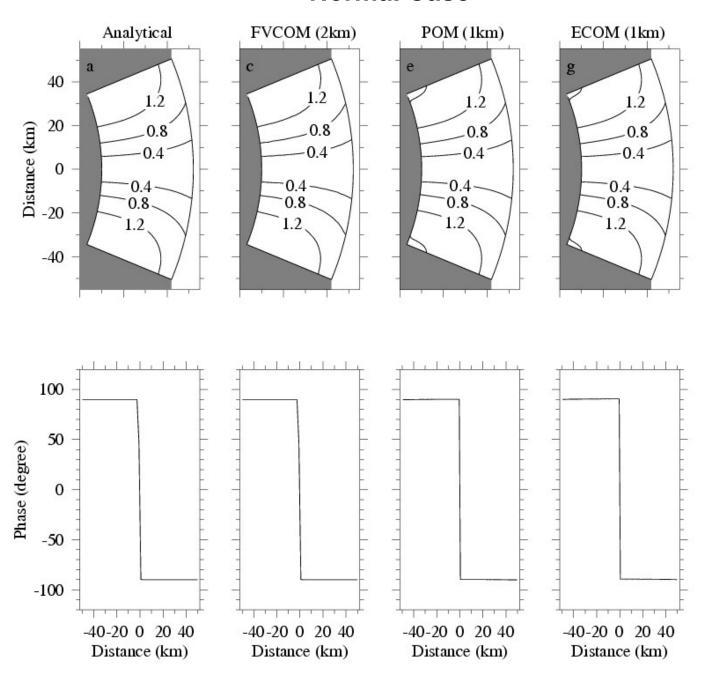
$$\begin{split} c_1 &= A \cdot Y_{\gamma_m}^{'} (L_1 \frac{\omega}{\sqrt{gH_0}}) / [J_{\gamma_m} (L \frac{\omega}{\sqrt{gH_0}}) Y_{\gamma_m}^{'} (L_1 \frac{\omega}{\sqrt{gH_0}}) - J_{\gamma_m}^{'} (L_1 \frac{\omega}{\sqrt{gH_0}}) Y_{\gamma_m} (L \frac{\omega}{\sqrt{gH_0}}) \\ c_2 &= -A \cdot J_{\gamma_m}^{'} (L_1 \frac{\omega}{\sqrt{gH_0}}) / [J_{\gamma_m} (L \frac{\omega}{\sqrt{gH_0}}) Y_{\gamma_m}^{'} (L_1 \frac{\omega}{\sqrt{gH_0}}) - J_{\gamma_m}^{'} (L_1 \frac{\omega}{\sqrt{gH_0}}) Y_{\gamma_m} (L \frac{\omega}{\sqrt{gH_0}}) \\ \gamma_m &= m\pi / \alpha \end{split}$$

# 1. Normal condition (non-resonance)

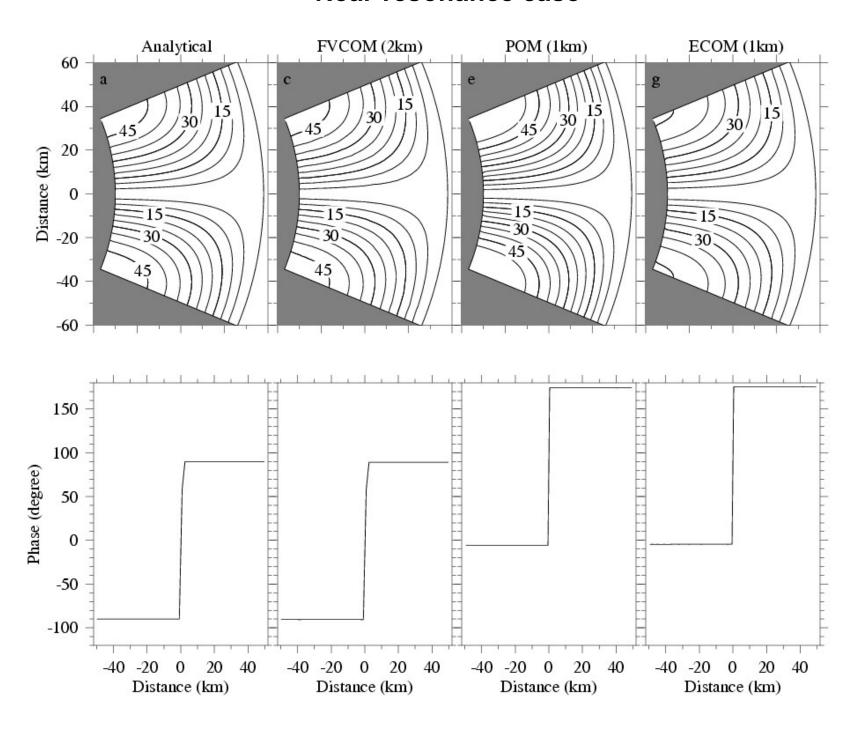


# 2. Near-resonance condition

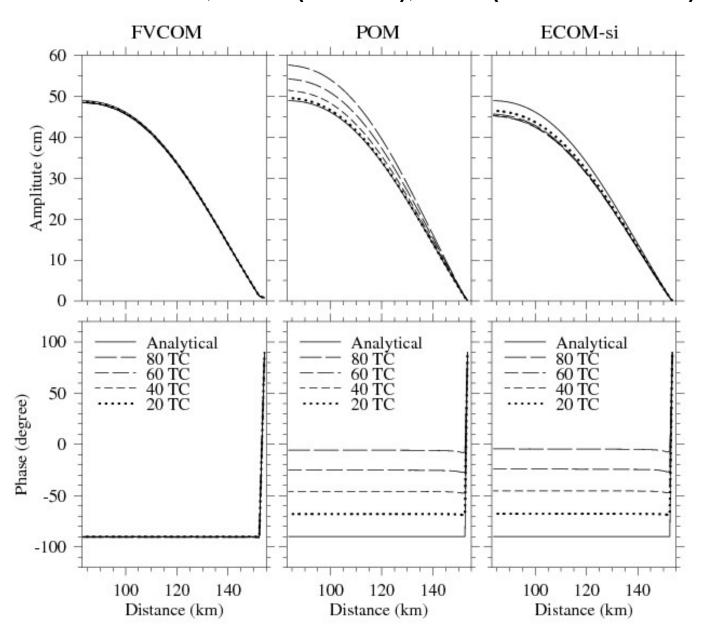
# **Normal Case**



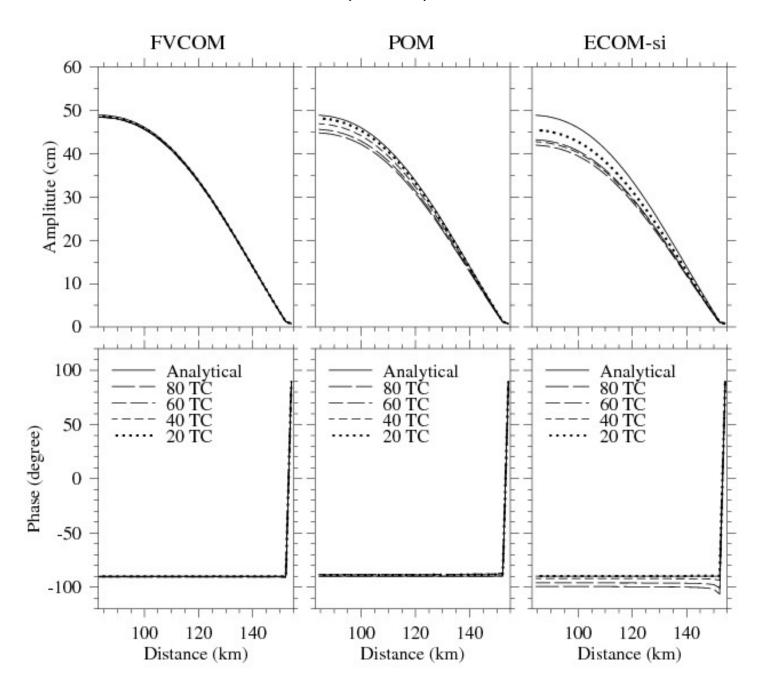
# **Near-resonance case**

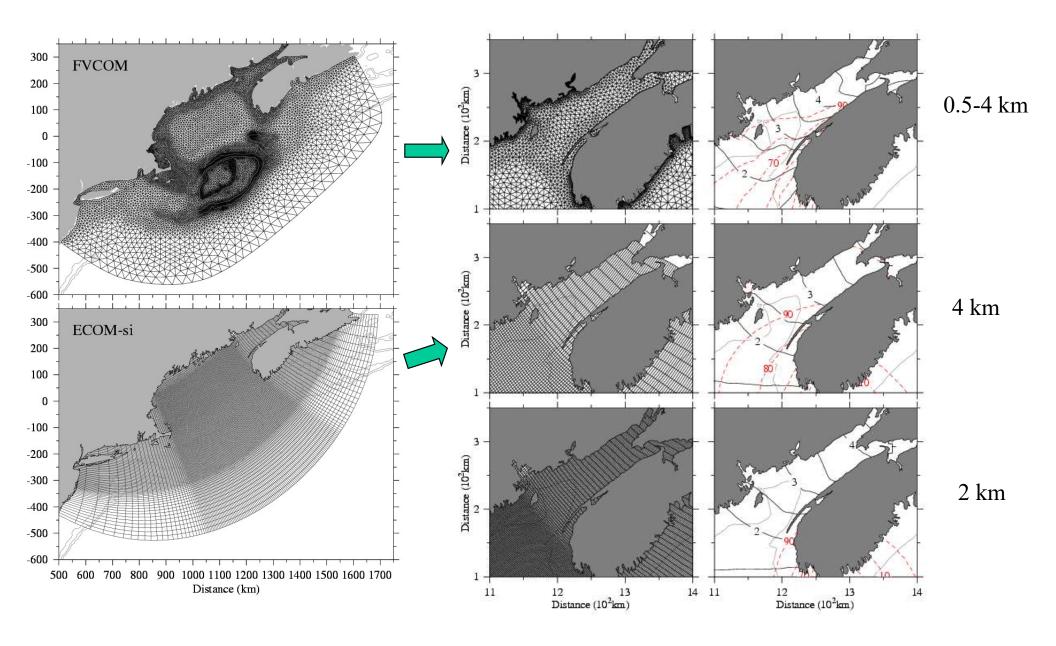


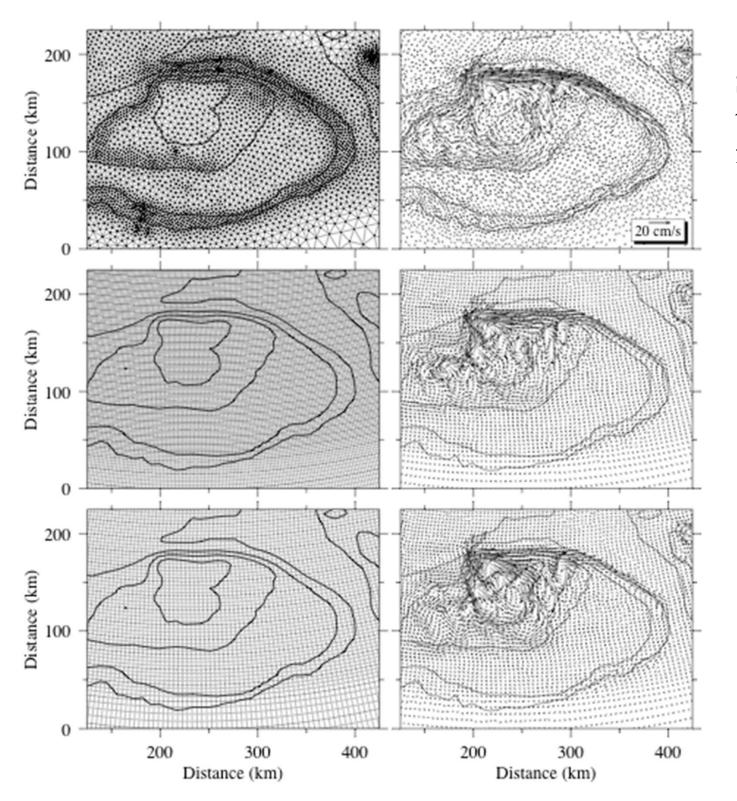
# Near-resonance, 2 km (FVCOM), 1 km (POM&ECOM-si)



# Near-resonance, 2km, Curvilinear

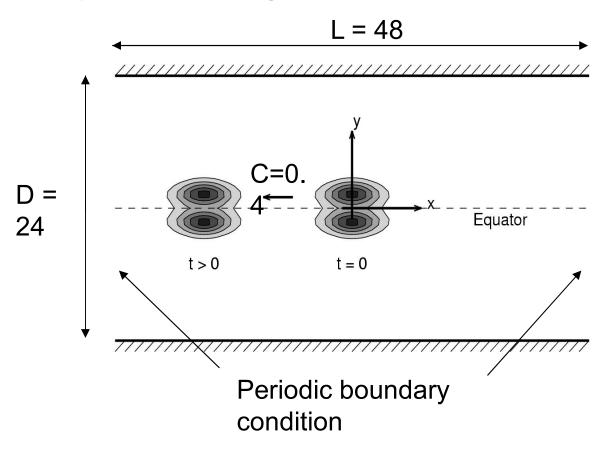




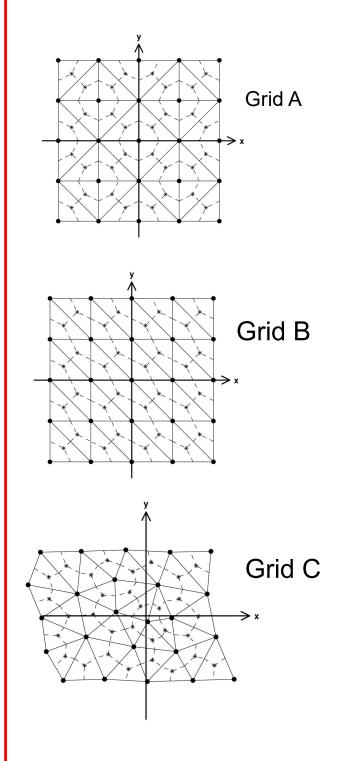


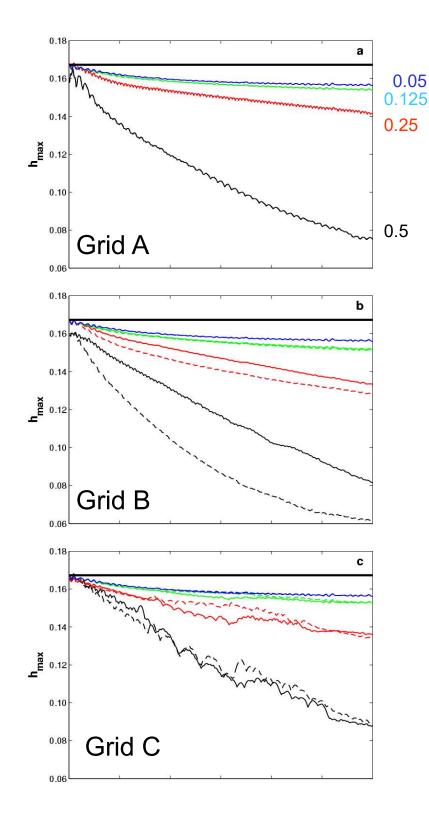
Slope topography fitting

# **Equatorial Rossby Soliton**



- 1. Nonlinear shallow water equation in equatorial β-plane
- 2. Inviscid flow
- 3. Asymptotic solutions available to zero and first orders (Boyd 1980,1985)





| Δx<br>(ND) | FVCOM (2 <sup>nd</sup> ) |                                | RO<br>(4'                      |                                | SEOM<br>(7-9 <sup>th</sup> )   |                                |
|------------|--------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|            | $h_n/h_t$                | C <sub>n</sub> /C <sub>t</sub> | h <sub>n</sub> /h <sub>t</sub> | C <sub>n</sub> /C <sub>t</sub> | h <sub>n</sub> /h <sub>t</sub> | C <sub>n</sub> /C <sub>t</sub> |
| 0.5        | 0.472                    | 0.917                          | 0.884                          | 1.088                          | 0.923                          | 0.98                           |
| 0.25       | 0.846                    | 0.984                          | 0.926                          | 0.993                          | 0.929                          | 0.99                           |
| 0.125      | 0.92                     | 0.984                          | 0.923                          | 0.986                          | 0.937                          | 0.989                          |
| 0.05       | 0.935                    | 0.983                          | 0.936                          | 0.983                          | 0.915                          | 0.98                           |

 $h_{\rm n}$ : Computed peak of the sea surface elevation at 120 units

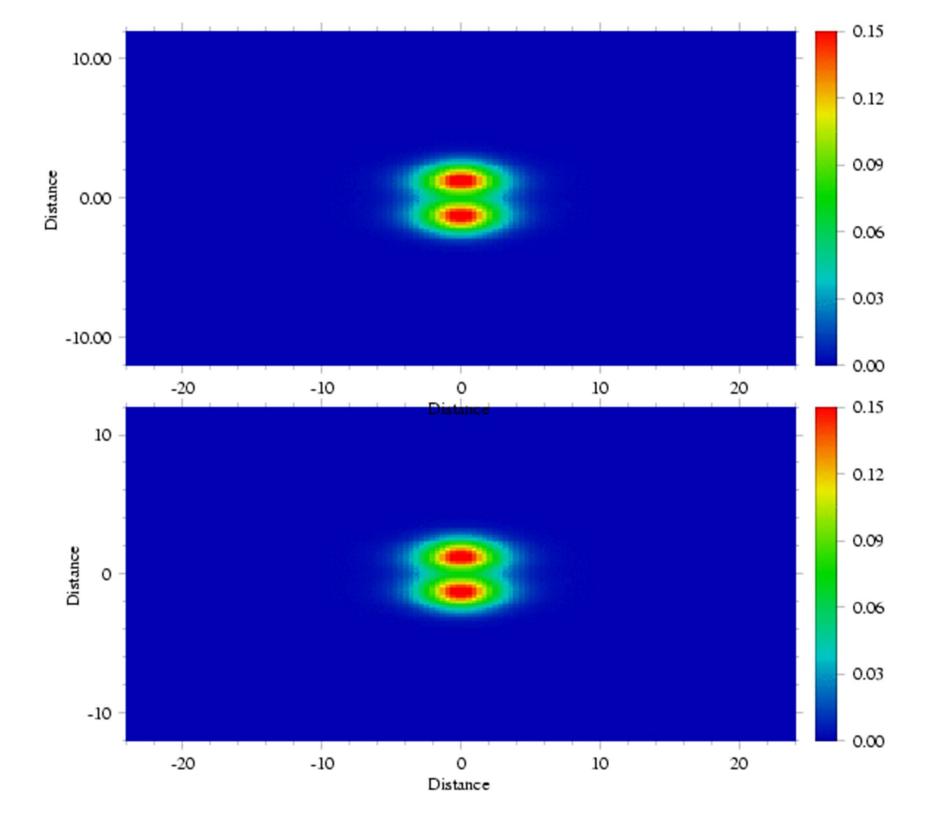
h<sub>t</sub>: Analytical peak of the sea surface elevation at 120 units

C<sub>n</sub>: Computed average speed

C<sub>t</sub>: Analytical averaged speed.

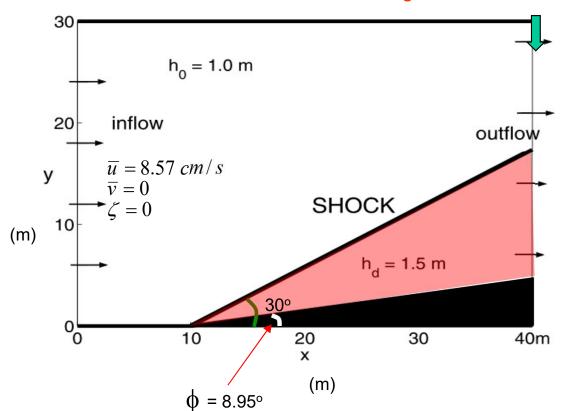
### Comments:

- 1. Analytical solution only represents the zero and 1st modes, while the numerical solution contains a complete set of higher order modes. This is not surprised to see numerical models can not exactly reach the analytical solutions.
- 2. FVCOM shows a fast convergence with increase of horizontal resolution.



# **Hydraulic Jump**

# No gradient condition



# Analytical solution:

Maximum sea level:  $\zeta_{\text{max}} = 0.5 \text{ m}$ 

Minimum sea level:  $\zeta_{min} = 0 \text{ m}$ 

Mean sea level:  $\zeta_{mean} = 0.5 \text{ m}$ 

Mean velocity:  $\overline{u} = 7.956 \text{ m/s}$ 

Mean Froude #:  $Fr = \frac{u}{\sqrt{gD}} = 2.075$ 

Shock angle:  $\alpha = 30^{\circ}$ 

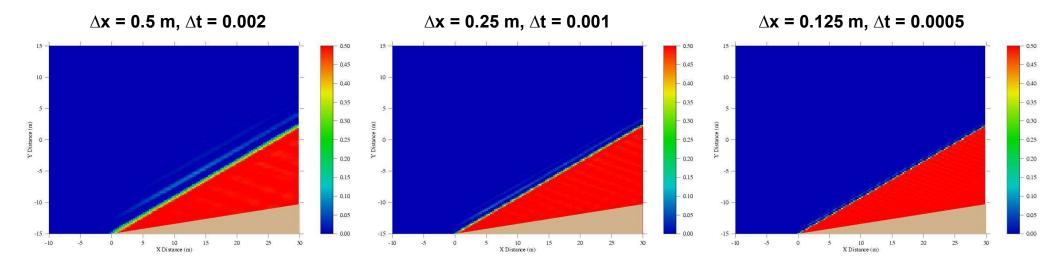
Thickness:  $\delta = 0 \text{ m}$ 

Mean deviation: |dy| = 0 m

# **Characteristics:**

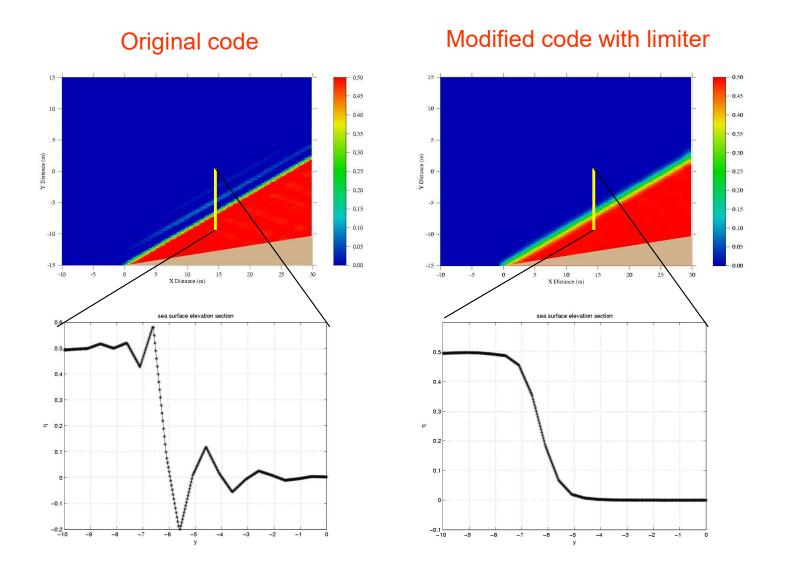
- Barotropic shallow water equations
- No rotation considered, i.e. f = 0,  $\beta = 0$
- Steady analytical solutions for u,  $\zeta$  and the jump angle relative to the x axis.

# The case with no horizontal diffusion: FVCOM quickly reaches steady status.



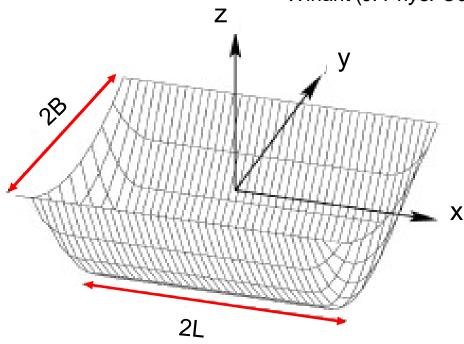
| Model | grids                                                       | Δt     | $\zeta_{\text{max}}$ | $\zeta_{ m min}$ | ζ <sub>mean</sub> | ū     | F <sub>r</sub> | α      | δ     | dy    |
|-------|-------------------------------------------------------------|--------|----------------------|------------------|-------------------|-------|----------------|--------|-------|-------|
| True  |                                                             |        | 0.5                  | 0                | 0.5               | 7.956 | 2.075          | 30     | 0     | 0     |
| FVCOM | 80 X 60                                                     | 0.002  | 0.688                | -0.269           | 0.5               | 7.949 | 2.072          | 29.952 | 0.111 | 0.305 |
|       | 160 X 120                                                   | 0.001  | 0.697                | -0.268           | 0.499             | 7.951 | 2.073          | 30.030 | 0.063 | 0.151 |
|       | 320 X240                                                    | 0.0005 | 0.696                | -0.272           | 0.5               | 7.951 | 2.073          | 30.029 | 0.037 | 0.076 |
| ROMs  | Reach an oscillatory solution without horizontal diffusion. |        |                      |                  |                   |       |                |        |       |       |

Over shocking can be reduced by introducing a slope limiter method (Hubbard, *J. Comput. Phys.*, 1999).



# 3-Dimensional Wind-Driven Flow in an Elongated, Rotating Basin

Winant (J. Phys. Oceano. 2004)



Length: 2*L*; width: 2*B*, and bathymetry:

$$h = h_0 \{0.08 + 0.92 * [X(x/L)(1 - (y/B)^2)]\}$$

where X(x) is a function in the form of

$$X(x) = \begin{cases} 1, & |x| < 1 - \Delta x \\ 1 - \left[\frac{|x| - 1 + \Delta x}{\Delta x}\right]^2, & |x| \ge 1 - \Delta x \end{cases}$$

 $\Delta x$  is a constant specified as 0.3% of the total length of the basin.

$$-L \le x \le L, -B \le y \le B$$

Governing equations:

$$\begin{cases} \nabla \cdot \vec{v} + w_z = 0 \\ f\vec{k} \times \vec{v} = -g\nabla \eta + K_m \frac{\partial^2 \vec{v}}{\partial z^2} \end{cases}$$

B.Cs

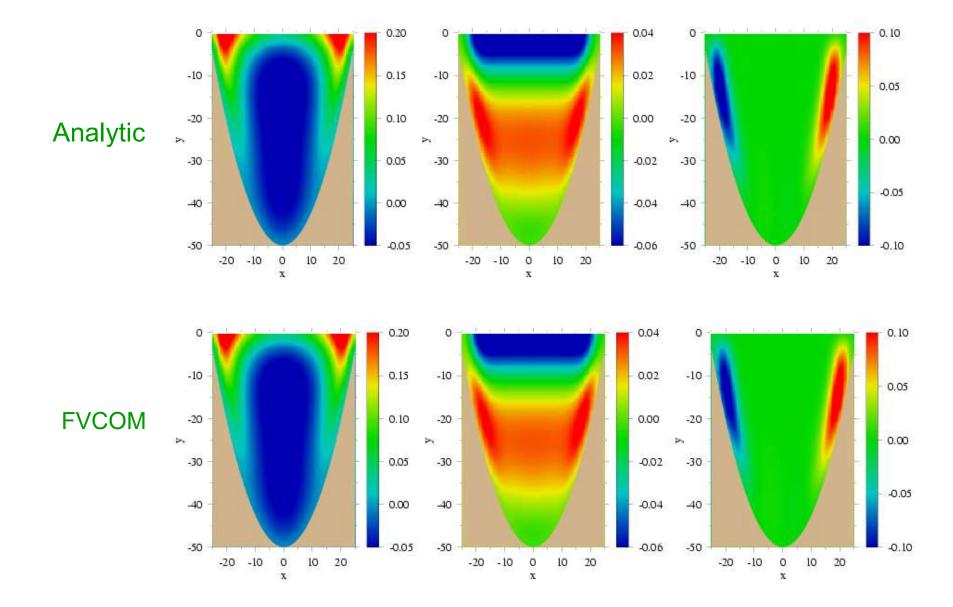
$$\begin{cases} \mathbf{r} \\ v_z = \frac{\mathbf{t}_s}{\rho K_m} \\ \mathbf{r} \\ v = 0 \end{cases} \quad w = 0 \quad at \ z = 0$$

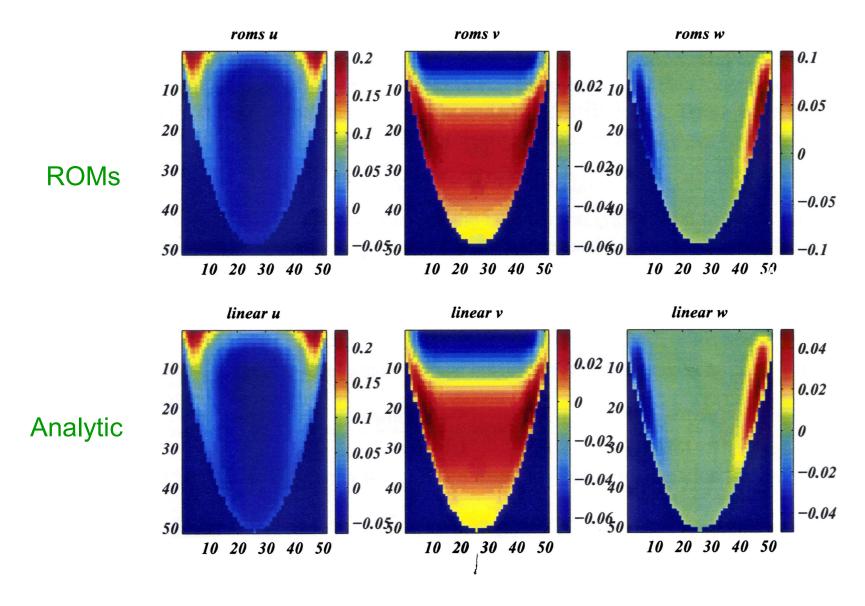
Steady status analytical solution for this linear equation system is given as:

$$u + iv = \frac{\sinh[\alpha(z+h)]}{\alpha \cosh(\alpha h)} - \frac{\eta_x + i\eta_y}{\alpha^2} \left[1 - \frac{\cosh(\alpha z)}{\cosh(\alpha h)}\right]$$

$$w = -\int v_y dz$$

where  $\alpha^2 = 2i\delta^{-2}$  and  $\delta = (2E)^{1/2}$  (*E*: Ekman number).





Be aware that ROMs underestimates *u* and overestimates *w* (color bar scales are different for analytical and ROMs' solutions). This figure is scanned from Winant's working note.