
MAR 513-Lecture 2: The Finite-Difference Methods

Taylor Series Expansion
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Suppose we have a continuous function f(x). Its value in the vicinity of  can be
approximately expressed using a Taylor series as

(2.1)

Using (2.1), we have derived the discrete expression for the first-order derivative as

(2.2)
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Replacing x by xi+1 or xi-1, in (2.2) or substracting
Taylor expansion equation for xi-1 from xi+1, we can
get

Expressing
11   iii xxx

;

iii xxx  1 xxx ii  1 we obtain
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The order of the higher-order terms that are deleted from the right-hand sides of the discrete 

equation. In numerical method, they  are called “truncation errors”. 

])[( mxO 

General forms: 








accurateorder  Second2

    accurateorder First 1

m

m

FDS: The first order accurate

BDS: The first order accurate

CDS: The second order accurate

Exercise: Derive CDS and determine its truncation error
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For the second order derivative, we also can use the same approach. 

Example:
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Use the uniform grid

(2.3)

(2.4)

Eq. (2.3) + Eq. (2.4)
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Then, we have 

Centered Difference Scheme (CDS) 
with second order accuracy



i,j

i,j+1

i,j-1

i+1,ji-1,j

X: i=1, 2, 3….N
Y: j=1,2,3…...M

Fig. 2.2: Uniform rectangular grids. 

Example of constructing the difference equation
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Select the CDS
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The basic idea for the finite-difference method is to replace the derivatives using the discrete

approximation and convert the differential equation to a set of algebraic equations.



(FDS) Scheme Difference Forward          );(
)()( 1 tO

t

tftf

t

f nn

n







 

The time derivatives

(BDS) Scheme Difference Backward          );(
)()( 1 tO

t

tftf

t

f nn

n







 

(CDS) Scheme Difference Central         ];)[(
2

)()( 211 tO
t

tftf

x

f nn

n







 

t

n-1 n n+1FDSBDS

CDS



Numerical Schemes

Explicit scheme: A numerical scheme in which the numerical value at time step (n+1)
is calculated directly from its previous value at the time step n. This means that once
the values at the time step n are known, we can “predict” a new value at the time step
(n+1) by a direct time integration.

Implicit scheme: A numerical scheme in which the numerical value at the time step
(n+1) is not explicitly obtained from its previous value at the time step n. This value
must be solved from an algebraic equation formed at the time step n+1.

Example: 
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Fig. 2.3: Schematic of a propagation of a blob. 
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It is solvable, with a general form



a) Leapfrog Scheme
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Truncation error:  

])[( 2tO 
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for time derivative

for space derivative

(2.5)

Then, the difference equation is 
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b). Forward Time/Central Space Scheme (Euler Scheme)
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Truncation error: 
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First-order accurate

Second-order accurate
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c). Forward Time/Backward Space Scheme
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First-order accurate

First-order accurate

Truncation errors:
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Sometime, it is also called the upwind scheme for the case C > 0.
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d). Forward Time/Implicit Central Space Scheme
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This is a fully-implicit scheme!
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e). Crank-Nicolson Scheme—Semi-implicit Scheme
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Truncation errors:



f). Lax-Wendroff Scheme
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Fig. 2.5: The space-time stencil used to construct the 
Lax-Wendroff scheme
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QS: How could we know which scheme is better? 

Or How do we evaluate these schemes?  

Next !



Numerical Stability

Stability: Will the numerical solution remain finite at all times and at all locations?

Example: The diffusion equation

(3.1)

Forward time scheme for time and central difference scheme for space, we have

(3.2)

2

2

x

T
A

t

T
h 






0
)(

2
2

11
1








 



x

TTT
A

t

TT n
k

n
k

n
k

h

n
k

n
k

Let us rewrite

2)( x

t
r






, then

)()21( 11
1 n

i
n

ih
n

ih
n

i TTrATrAT 
 

(3.3)

(3.4)



Assume that an error  appears at a point io at initial, let us examine if this error would grow up
with time. If does, the numerical scheme is unstable. If doesn’t, the numerical scheme is stable or
at least neutral stable.

Case 1: 
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When the error appears at the initial, the approximate solution is

(3.6)-(3.5) producing an error equation
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Table of the errors

Errors decreases with time integration, so the method is stable!



Case 2:
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Error equation is
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Error increases with time integration, so the method is unstable!



QS 1: Do we have to make a table every time to determine the stability of a numerical scheme?

QS 2: What is the definition of the numerical stability?

Numerical stability is generally built on an assumption that the boundary values are accurate and
errors appear at the initial integration. Stability analysis is to determine if this error would grow
up.

For a linear t-x equation, the error always could be expressed by a wave function such as

xiknn
i eATT  0 (3.9)

where A is the amplitude factor, To is the initial value,  n is the number of the tine integration, k is 
the node point  
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Example:

Substituting (3.9) into the above equation, we have

After removing the common factors, we get 

xrArAA hh  cos221

Then 

1)cos1(21  xrAA h

To make the method stable, we must have
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That is equivalent to  

So, the stability condition is:
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For case 1: r = 1/(2Ah)

stable!            
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For case 2: r = 1/Ah

unstable!              
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Now, let us use this method to analyze all the advection schemes described in the last class:

1. Leapfrog scheme
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Central difference for both time and space.
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Assume that 

Then, we have

Solution is 
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Let’s define that

, then the solution can be expressed as 
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For stability, |A±| ≤ 1

If  ≤ 1, 1)1( 2/122  A Stable !

If  > 1, 1)1( 2/12  A because |A| > 1

Therefore, the leapfrog scheme is only stable if  ≤ 1 , i. e. 
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2) Forward Time/Central Space Scheme (Euler Scheme)

Assume that 
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Therefore, no matter what the ratio of time step to space grid size is chosen, the Euler scheme is 
an absolutely unstable scheme!



3). Forward Time/Backward Space Scheme
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For |A|2 ≤ 1, then 
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So, if we use the upstream information
(backward) for space gradient and forward
time stepping, the method is conditionally
stable!

Since |A| < 1, the scheme is artificial numerical 
damping!
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4). Forward Time/Implicit Central Space Scheme
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No matter what ∆t and ∆x are chosen, this scheme is always stable. However, the accuracy of the scheme

still depend on ∆t and ∆x because it only O(∆t) and O(∆x2) . So, you can get serious phase errors for both
long and short waves if C(∆t/∆x) is too large. In fact, the implicit schemes essentially have C =  in that
the information can be spread throughout the grids over one time step.

damping scheme!
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5. Crank-Nicolson Scheme—Semi-implicit Scheme
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1A Crank-Nicolson scheme is unconditionally stable!

This scheme helps reducing the artificial numerical damping.



Central difference scheme for the time integration produces two numerical solutions, even though
it provides a second-order numerical accuracy. This can produces additional numerical errors!

Example: Leapfrog Scheme: there are two numerical solutions: A±
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For advection equation, the analytical solution is
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But now, the central difference scheme produces two solutions:
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Physical mode

Computational mode

Computational mode has also a finite amplitude bounded by |A| ≤ 1, but its amplitude goes like (-1)n. It
changes sign with each time step and causes significantly artificial numerical error waves. Therefore,
when a central difference scheme is used for the time integration, we must try to choose the initial
conditions so that the computational mode is zero. However, it will grow due to numerical errors like
truncation roundoff, so the computational mode can not be ignored.



Computational dispersion
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This advection equation has an analytical solution in the form of a single harmonic component

])(Re[),( ikxetUtxu 

(3.12)

(3.13)

Substituting (3.13) into (3.12), we have 

0 ikCU
dt

dU (3.14)

This is an oscillation equation where kC is the frequency (called ). Therefore,
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Since C is constant, so that waves with different wave lengths propagate with the same phase speed.
The function u(x,t) is advected with no change in shape at a constant velocity C along the x axis:

There are no dispersion!

(3.15)



Now, let us consider the difference equation like
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Substituting (3.17) into (3.16), we have

Therefore,
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sin

ˆ
Numerical phase speed is a function of the wave number k, so
that the finite differencing in space cause a dispersion of the
waves! It is also called “ computational dispersion”!

As ∆x increases from zero, the phase speed monotonically decreases relative to C. It becomes zero for
the shortest resolvable wavelength 2∆x (k∆x =)-stationary. Thus, all waves propagate at a speed less
than the true phase speed C.
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Using the finite-difference method to solve the advection equation, we have encountered two 

difficulties:

1) The advection speed is less than the true advection speed

2) The advection speed changes with wave number: this false dispersion is particularly serious
for the shortest waves

If the pattern that is being advected represents a superposition of more than one wave, this false
dispersion will result in a deformation of that pattern.

Examples:  1) Fronts (both ocean and atmosphere): the initial fields could be deformed quickly!

If the patterns are advected with a wave-number dependent phase speed, the nature of the energy
propagation will be affected! Therefore, the difference scheme might also destroy the true energy
balance due to the difference approach.



The group velocity
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So, in the advection equation with a constant C, its group velocity is also constant and equals to 
its phase speed. 

(3.19)

After the equation is discretized, its group velocity becomes
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As k∆x increase from zero, the group velocity decreases monotonically relative to cg and 

becomes –cg for the shortest resolvable wavelength of 2∆x (k∆x= ). 
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This implies that the central difference
scheme in space could cause the energy
propagate in the opposite direction!



Nonlinear Instability
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This is usually called “advective equation for momentum and sometimes is also called “shock 
equation”.

The general solution of (3.21) is

)( utxfu  (3.22)

where f is an arbitrary function.
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Minimum length of a wave is 2∆x,  therefore, the maximum wave number

xkmax x
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When preformed in finite differences, nonlinear terms could result in an error related to the 

inability of the discrete grids to resolve the wave lengths shorter than 2∆x,



For example,
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kxkkxkxk
x

u
u 2sin

2

1
cossin 
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(3.24)

If the wave number in (3.23)

maxmax2

1
kkk 

Then, the nonlinear term will produce a wave number (2k > kmax) that can not resolved by the 
grid! This can not be properly reproduced in a finite-difference calculation!

x

A nonlinear wave with a wavelength of 4∆x/3 2∆x



In a more general case, suppose that a function consists of a number of harmonic components


n

nuu (3.25)

Then, the nonlinear term will produce a products of harmonics of different wave lengths such as

])cos()[cos(
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1
sinsin 212121 xkkxkkxkxk 

Then, even if a finite difference calculation is started with waves which all have k ≤ kmax, very
soon through this process of nonlinear interaction waves will be formed with k > kmax, and a
misrepresentation of waves will occur!

This misrepresentation error is called “aliasing error”

Energy spectrum

For example, the combination of two waves: k1+k2 > kmax. Because the energy of this
combined high wave number wave can not be resolved in the finite-difference scheme, it will
be misplaced into the energy pool with k < kmax.



1) Aliasing errors: misrepresents the wave shapes and energy and it can cause the nonlinear
instability of the numerical calculation. Such an error is not be able to control by the
horizontal resolution, even it is related to it.

2) Nonlinear instability can be determined using the harmonic analysis method shown in the
linear equation. This instability does not depend on the ratio of the time step to space
resolution.

Comments:

The best way to control the nonlinear instability: 

Develop a numerical scheme to conserve the momentum and mass in the individual 
cells and entire computational domain.


