
The Next Generation FVCOM: Algorithms and Progresses 

http://fvcom.smast.umassd.edu/
http://www.fvcom.org

Siqi Li, Changsheng Chen, Jianhua Qi, Geoffrey Cowles

University of Massachusetts School of Marine Science 
New Bedford, MA 02744



Outline 

 A brief review of current FVCOM mode-split and semi-implicit solvers.

 The next-generation FVCOM: Hybrid Eulerian-Lagrangian, semi-
implicit/implicit time integration. In particular,  

• The second-order backward difference time integration scheme (BDF2).  

• The operator-integration-factor splitting (OIFS) algorithm for horizontal advection. 

• Fully implicit schemes for vertical advection. 

• Semi-implicit scheme for water elevation.

 Update of MPI-OpenMP combined parallelization.



FVCOM source code
Cartesian/Spherical coordinates

FVCOM  2-D and 3-D Wet/Dry Treatment Methods

Options to Select Multi Radiation Open Boundaries  

Forcings:

Tides (equilibrium and from open boundaries)
Winds or wind stresses, air pressure gradients  
Net heat flux/shortwave radiation
Precipitation/evaporation
River discharges, groundwaters, and WWTP outfalls 
Open boundary fluxes

MPI/OpenMP Parallel

NetCDF Output

Nudging and OI Assimilations

Reduced/Ensemble Kalman Filters (RRKF, EnKF, 
ETKF, EnSKF, SEIK)

Polar stereographic projecting-spherical 
coordination nested module at North Polar    

EMSF coupler with Multi-domain WRF 

One-way and Two-way Nesting based on EMSF

ViSiT monitoring

Existing Model Modules Existing Technology ModulesKey:

3-D Sediment Models (SEM): Non-cohesive/cohesive 

Generalized Biological Model (GBM, ERSEM)

Water Quality Models
(UG-RCA, UG-QUAL-ICM)

Lagrangian Fish Population Models 

Surface Wave Models (SWAVE/UNSWAN/WWIII)

Non-hydrostatic Solvers 
(Pressure correction/projection) 

Ice Models (UG-CICE: Seas and freshwater lakes)

Emerged and/or Submerged Dike-Groyne Modules 

Library linking to other models New Modules

One-way Multi-Model or Domain Nesting 

Review of FVCOM

Vegetation Model 

General Ocean Turbulence Model (GOTM)
EMSF coupler with WW3 and NWM 



Vertical Coordinates 

Generalized terrain-following coordinate transformations
based on the approach described in Pietrzak et al. (2002)
(Ocean Modeling, 3, 173-205).

Hf

• Uniform thicknesses in surface mixing and 
bottom boundary layers

• Avoiding artificial gradient due to 
precipitation via evaporation 

• SST/SSS assimilation at the same depth.

s-coordinate-coordinate

• Watershed, 
• Inter-tidal zone, 
• Flooded areas, 

with a mean  
water depth 
of ≤ 0 

Review of FVCOM

A hybrid coordinate 

FVCOM Solvers

Time integration:   

1) Mode-splitting and 2) semi-implicit solvers 

Mode-splitting:  

2-D barotropic mode (ΔTE) and 3-D baroclinic mode 
(ΔTI), a recommended ratio of  ΔTI/ΔTE is 10.

Advantages: Easily set; able to run a 2-D model
separately; does not depend on libraries of matrix
solvers, etc.

Disadvantage: 2D-3D mode adjustments could cause 
numerical oscillations in the deep ocean.  

Semi-implicit:  

FVCOM is solved in a single time step (ΔTI)

Advantage: faster, no adjustment needed, suitable for 
basin and global applications

Disadvantage: Requires PETSc (scalable sparse matrix 
solver library).



Limitation in Applications

Remarks on FVCOM Performances 

Merits

• Unstructured-grid.

• Volume conservations.

• Hydrostatic/non-hydrostatic dynamics.

• Options for multi-finite-volume advection and time integration 
schemes. 

• Simple module structures of the source.

• Well-validated via various benchmark test problems through 
inter-model comparisons with ROMS.

• Computationally efficient as finite-difference models.

• Coupled fully with ice, sediments, surface waves, vegetation, 
WRF, and ecosystem/water quality models. 

• Multiple choices in data assimilation, including nudging, OI, and 
various Kalman filters. 

• Successful application to estuaries, coastal to global ocean. 

• Allows a straight wall in the terrain-following coordinates

Challenging

• Both mode-split and semi-implicit integration
solver is constrained by the Courant-
Friedrichs-Lewy (CFL) condition. In general,

𝑢
∆𝑡

∆𝑠
≤ 𝐶௠௔௫

𝑢: the magnitudes of the velocity
∆𝑡: the internal time step
∆𝑠: the horizontal resolution.
𝐶௠௔௫ ~1, when either mode-splitting or semi-
explicit is used.

When applying FVCOM to an estuary with a
horizontal resolution of a few meters, the time
step is required to be very small, especially in a
narrow water passage with strong flow.



Proposed solutions

Solution 1:

 Adjustable ∆𝑡 based on the magnitude of the 
velocity. 

Advantages:  

• Simple to be implemented, since the adjustment can 
be done based on the CFL number constraint.   

• Ensure numerical stability during unusual extreme 
storm events. 

Disadvantages: 

• In most cases, the model blows up at a local single
cell or node, and the adjustment is made over the
entire domain, affecting computational efficiency.

• The time step is still constrained by the CFL 
number. 

Solution 2:

 Upgrade by implementing an implicit or semi-
Lagrangian solver.

Advantages:  

• The time step is not constrained by the CFL condition 
or allows a larger CFL number. 

• Significantly improvement in numerical stability. 

Disadvantages: 

• Enhancing numerical diffusion.

• Affecting computational efficiency.

• Although the Lagrangian method has no numerical
dispersion, the inaccuracy of inverse particle-tracking
and interpolation could lead to numerical bias that
may be larger than dispersion.



Proposed solutions

An Illustrative Example of the Eulerian-Lagrangian Method
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The diffusion equation for a concentration C is given as 

Discretizing using Lagrangian inverse tracking on the left side and Eulerian central difference 
scheme on the right side, we have 
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௡

∆𝑥ଶ
+

𝐶௜,௝ିଵ
௡ − 2𝐶௜,௝

௡ + 𝐶௜,௝ାଵ
௡

∆𝑦ଶ
)

𝐶௜,௝
௡ାଵ = 𝐶௡ 𝑃 +

௄ಹ∆௧

∆௫మ (𝐶௜ାଵ,௝
௡ −2𝐶௜,௝

௡ + 𝐶௜ିଵ.௝
௡ ) +

௄ಹ∆௧

∆௬మ (𝐶௜,௝ିଵ
௡ −2𝐶௜,௝

௡ + 𝐶௜,௝ାଵ
௡ )

Then, 𝐶 at the ith and jth node can be determined by  

The key point is how to determined 𝐶௡ 𝑃 . Two steps: ቊ
1) Find the location of P using the Lagrangian inverse tracking. 
2) Determine C at P at the time step n by interpolation.              

𝑢௜,௝
௡ାଵ, 𝑣௜,௝

௡ାଵ

𝑃 𝑥, 𝑦 = 𝑥௜,௝ − 𝑢௜,௝
௡ାଵ∆𝑡 , 𝑦௜,௝ − 𝑣௜,௝

௡ାଵ∆𝑡 ,

𝑑𝑥

𝑑𝑡
= −𝑢௜,௝

௡ାଵ ⟹ 𝑥௣ = 𝑥௜,௝ − 𝑢௜,௝
௡ାଵ∆𝑡 

𝑑𝑦

𝑑𝑡
= −𝑣௜,௝

௡ାଵ ⟹ 𝑦௣ = 𝑥௜,௝ − 𝑣௜,௝
௡ାଵ∆𝑡

After using the velocity at the time step (n+1) backward to find P, one can use the interpolation method to determine 𝐶௡ 𝑃 from 
surrounding nodes. 



Proposed solutions

Merits:

• No advection equations are involved, so it does not have numerical dispersion!

• It is numerically stable with a larger CFL number.

• Allowing a larger time step in the numerical integration.

Challenging: 

• Numerical diffusions due to inaccurate Lagrangian particle tracking and interpolation could be significant.
Implementing the high-order particle tracking and interpolation methods, like the 4th-order Runge-Katta method
or the Discontinuous Galerkin method, could be helpful.

• Computational efficiency.

• Boundary treatments.

• Particle path lines often intersect and/or disperse, making it difficult to resolve the fluid interactions accurately.

• Ensuring particle tracking accuracy in sharp gradient areas is crucial, as it can significantly impact the overall
simulation results.

• Since the horizontal velocity is usually one or two orders of magnitude larger than the vertical velocity, the
characteristic trajectories in a 3-D space are at distinct scales of the motion in the horizontal and vertical.



FVCOM-SWAVE
Explicit 

SWAVE
Semi-Lagrangian

∆𝑡 = 5 𝑠𝑒𝑐

∆𝑡 = 30 𝑠𝑒𝑐

The time required
(1 processor) 

Time (hours)Schemes

0.83FVCOM-
SWAVE 
explicit 

3.0SWAVE-
Semi-Lag
(60 sec)

6.0SWAVE-
Semi-Lag
(30 sec)

36 SWAVE 
Semi-Lag
(5 sec)

A

B

Site B

Site A

Example: Semi-Lagrangian scheme       



Current versions of FVCOM

The governing equations in the generalized spherical coordinates are given as 
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(𝑢, 𝑣𝑐𝑜𝑠𝜑)

F
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F: 𝜁, 𝜔, 𝑤, 𝑇, 𝑆, 𝜌, 𝑞ଶ, 𝑞ଶ𝑙, 𝜀, 

Cell-centered Cell vertex median

𝜔

𝜔

u,v, T, S

u,v, T, S

r=r2

∆𝑟ଵ

∆𝑟ଶ

r=-1

r= 0

0.5∆𝑟ଶ

0.5∆𝑟ଵ

𝜔

The horizontal The vertical 

𝑥 𝑖 , 𝑦 𝑖 , 𝑖 = 1: 𝑁

𝑥௡ 𝑗 , 𝑦௡ 𝑗 , 𝑗 = 1: 𝑀  

Grid: Non-overlapping unstructured-grid
triangles

𝑢, 𝑣𝑐𝑜𝑠𝜑: at centroids 

𝜁, 𝜔, 𝑤, 𝑇, 𝑆, 𝜌: at nodes

N: The total centroid number

M: The total node number 

On the ith triangle, three nodes are 
defined as

𝑁௜ 𝚥̂ , 𝚥̂=1:3; counted clockwise.

On the jth node, the total number of the
surrounding triangles connected to this
node is defined as 𝑁𝑇(𝑗), counted by
𝑁𝐵௝(𝑚), and

𝑁𝐵௝ m = 1: 𝑁𝑇(𝑗)

Avoid the errors in forcings 
due to various triangle sizes

(𝑢, 𝑣𝑐𝑜𝑠𝜑)(𝑢, 𝑣𝑐𝑜𝑠𝜑)

(𝑢, 𝑣𝑐𝑜𝑠𝜑)

(𝑢, 𝑣𝑐𝑜𝑠𝜑)(𝑢, 𝑣𝑐𝑜𝑠𝜑)

(𝑢, 𝑣𝑐𝑜𝑠𝜑)

(𝑢, 𝑣𝑐𝑜𝑠𝜑)

(𝑢, 𝑣𝑐𝑜𝑠𝜑)

(𝑢, 𝑣𝑐𝑜𝑠𝜑)

(𝑢, 𝑣𝑐𝑜𝑠𝜑)

(𝑢, 𝑣𝑐𝑜𝑠𝜑)

(𝑢, 𝑣𝑐𝑜𝑠𝜑)

Grid designs



Current versions of FVCOM
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Zonal and meridional components of advection termsFXADV , FYADV

Zonal and meridional components of the Coriolis terms.FXCOR , FYCOR

Zonal and meridional components of barotropic pressure gradient terms. FXCOR , FYCOR

Zonal and meridional components of barotropic surface pressure forcing 
terms 

FXSP , FYSP

Zonal and meridional components of baroclinic pressure gradient forcing 
terms

FXBCP , FYBCP

Zonal and meridional components of horizontal diffusion terms FXHVIS , FYHVIS

The zonal and meridional components of curvature terms in the spherical 
coordinates. 

FXC , FYC

To simplify the description of numerical algorithms, 
we use the hydrostatic momentum equations, for 
example.  

𝑅௨ = 𝐹𝑋𝐴𝐷𝑉 + 𝐹𝑋COR + 𝐹𝑋SP + 𝐹𝑋BCP + 𝐹𝑋HVIS + 𝐹𝑋c

Here,

𝑅௩ = 𝐹𝑌𝐴𝐷𝑉 + 𝐹𝑌COR + 𝐹𝑌SP + 𝐹𝑌BCP + 𝐹𝑌HVIS + 𝐹𝑌c
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In the current version of FVCOM, the momentum equations are solved numerically in two steps. In particular,  
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Step 1: Explicit: the 2nd-order
accurate 4th Runge-Katta scheme.
Constrained by the CFL condition

Step 2: Implicit: Absolute stable, no 
constrained by the CFL condition 



The advection terms are calculated by an upwind scheme with a modified Runge-Kutta time-stepping scheme for the 2-D mode and an 
upwind or a modified Runge-Kutta scheme for the 3-D mode (Kobayashi, 1999). 

1. Explicit method

𝑢௜ 𝑥ᇱ, 𝑦ᇱ = 𝜙௜
௨ 𝑥ᇱ, 𝑦ᇱ = 𝑢௜(𝑥௜௖, 𝑦௜௖) + 𝑎௜

௨(𝑥ᇱ−𝑥௜௖) + 𝑏௜
௨(𝑦ᇱ − 𝑦௜௖)

𝑣௜(𝑥′, 𝑦′) = 𝜙௜
௩(𝑥ᇱ, 𝑦ᇱ) = 𝑣௜(𝑥௜௖, 𝑦௜௖) + 𝑎௜

௩ 𝑥ᇱ − 𝑥௜௖ + 𝑏௜
௩(𝑦ᇱ − 𝑦௜௖)

𝑎௜
௨, 𝑎௜

௩,𝑏௜
௨, 𝑏௜

௩ are determined by a least-square method with velocity values at 4
cell centered points. 𝑥௖ and 𝑦௖ are location of the triangular central cell.

The x and y components of the horizontal advection are calculated numerically by

𝐴𝐷𝑉𝑈 = ෍ 𝑢௜௠𝐷௠
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𝑣௡௠𝑙௠

𝑢௜௠, 𝑣௜௠: velocities on edge 𝑚, 𝑣௡௠: normal velocity on edge, 𝑙௠: edge length, Dm is 
depth 

𝑢௜௠=൝
𝜙௜

௨ 𝑥௜௖, 𝑦௜௖  ,                   𝑣௡௠ < 0

𝜙ே஻೔ ௠
௨ 𝑥௜௠, 𝑦௜௠ ,          𝑣௡௠ ≥ 0
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௩ 𝑥௜௖, 𝑦௜௖  ,                   𝑣௡௠ < 0

𝜙ே஻೔ ௠
௩ 𝑥௜௠, 𝑦௜௠ ,         𝑣௡௠ ≥ 0

𝑥௜௠, 𝑦௜௠: cell-centered point of the surrounding triangle, 
NBi(m): the neighbor triangle, (𝑥௜௖, 𝑦௜௖): the centered location of the ith triangle. 

u,vcos

u,vcos
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u,vcosu,vcos

u,vcos
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𝑦

𝑥

𝑥 = 𝑅𝑐𝑜𝑠𝜑 𝜆 − 𝜆௢ ; 𝑦 = 𝑅(𝜑 − 𝜑௢) 

𝑥 = 𝑅𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜆; 𝑦 = 𝑅𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜆

MCT

MCE:The momentum control element, a 
triangle with 𝑢 and 𝑣𝑐𝑜𝑠𝜑 at its centroid. 

Current versions of FVCOM
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𝜕𝜑
]𝑅ଶ𝑐𝑜𝑠𝜑𝑑𝜆𝑑𝜑

𝜁௝
଴ = 𝜁௝

௡;  𝑅఍
଴ = 𝑅఍

௡

𝑅఍
௡ = ∑ (∆𝑥ଶ௠ିଵ𝑣௠

௡ே்(௝)
௠ିଵ − ∆𝑦ଶ௠ିଵ𝑢௠

௡ )𝐷ଶ௠ିଵ
௡ + ∑ (∆𝑥ଶ௠𝑣௠

௡ே்(௝)
௠ିଵ − ∆𝑦ଶ௠𝑢௠

௡ )𝐷ଶ௠
௡

𝜁௝
௞ = 𝜁௝

଴ − 𝛼௞ ୼௧ோഅ
ೖషభ

ଶஐ
ೕ
അ ;  𝜁௝

௡ାଵ = 𝜁௝
ସ

𝑢௜
଴ = 𝑢௜

௡; 𝑣௜
଴ = 𝑣௜

௡; 𝑅௨
଴ = 𝑅௨

௡; 𝑅௩
଴ = 𝑅௩

௡

𝑢௜
௞ = 𝑢௜

଴ − 𝛼௞ ୼௧ோೠ
ೖషభ

ଶஐ೔
ೠ ; 𝑣௜

௞ = 𝑣௜
଴ − 𝛼௞ ୼௧ோೡ

ೖషభ

ଶஐ೔
ೡ ;     𝑢௜

௡ାଵ = 𝑢௜
ସ; 𝑣௜

௡ାଵ = 𝑣௜
ସ

For example, the surface elevation is determined by the continuity equations given as 

The same Runge-Kutta scheme is used for horizontal advection terms in the momentum equations

⇒
𝜕𝜁௜

𝜕𝑡
= −

𝑅

Ω௜
఍

[ර 𝑢ത𝐷𝑑𝜑ᇱ

ఝ

− ර (𝑣̅𝑐𝑜𝑠𝜑𝐷)𝑑𝜆ᇱ

ఒ

] ∆𝑥 = 𝑅𝑐𝑜𝑠𝜑𝑑𝜆, ∆𝑦 = 𝑅𝑑𝜑

Numerically integrated using the modified Runge-Kutta time-stepping scheme with a second-order 
approximation:

TCE: The tracer control
element: an area with a node
as a center and bounded
triangles with 𝑢 and 𝑣𝑐𝑜𝑠𝜑
at its centroid.

𝑢, 𝑣𝑐𝑜𝑠𝜑



𝑢, 𝑣𝑐𝑜𝑠𝜑𝑢, 𝑣𝑐𝑜𝑠𝜑

𝑢, 𝑣𝑐𝑜𝑠𝜑 𝑢, 𝑣𝑐𝑜𝑠𝜑

𝑢, 𝑣𝑐𝑜𝑠𝜑

Current versions of FVCOM



Current versions of FVCOM

ඵ න
𝑢𝐷 ௞

௡ାଵ − 𝑢𝐷 ௞
∗

∆𝑡
𝑑𝜎𝑑Ω

ఙೖ

ఙೖశభஐ

= ඵ න
1

𝐷

𝜕

𝜕𝜎
𝐾௠

𝜕𝑢

𝜕𝜎
𝑑𝜎𝑑Ω

ఙೖ

ఙೖశభஐ

⟹ 𝑢𝐷 ௞
௡ାଵ= 𝑢𝐷 ௞

∗ + 
2Δt

𝐷௡ାଵ 𝜎௞ − 𝜎௞ାଵ
𝐾௠,ఙೖ

௡ାଵ
𝑢௞ିଵ

௡ାଵ − 𝑢௞
௡ାଵ

𝜎௞ିଵ − 𝜎௞ାଵ
− 𝐾௠,ఙೖశభ

௡ାଵ
𝑢௞

௡ାଵ − 𝑢௞ାଵ
௡ାଵ

𝜎௞ − 𝜎௞ାଶ

Step 2: Vertical diffusion terms:

ඵ න
𝑣𝐷 ௞

௡ାଵ − 𝑣𝐷 ௞
∗

∆𝑡
𝑑𝜎𝑑Ω

ఙೖ

ఙೖశభஐ

= ඵ න
1

𝐷

𝜕

𝜕𝜎
𝐾௠

𝜕𝑣

𝜕𝜎
𝑑𝜎𝑑Ω

ఙೖ

ఙೖశభஐ

⟹ 𝑣𝐷 ௞
௡ାଵ= 𝑣𝐷 ௞

∗ +  
2Δt

𝐷௡ାଵ 𝜎௞ − 𝜎௞ାଵ
𝐾௠,ఙೖ

௡ାଵ
𝑣௞ିଵ

௡ାଵ − 𝑣௞
௡ାଵ

𝜎௞ିଵ − 𝜎௞ାଵ
−  𝐾௠,ఙೖశభ

௡ାଵ
𝑣௞

௡ାଵ − 𝑣௞ାଵ
௡ାଵ

𝜎௞ − 𝜎௞ାଶ

−𝐴௞𝑢௞ାଵ
௡ାଵ + 𝐵௞𝑢௞

௡ାଵ − 𝐶௞𝑢௞ିଵ
௡ାଵ = 𝑢௞

∗

−𝐴௞𝑣௞ାଵ
௡ାଵ + 𝐵௞𝑣௞

௡ାଵ − 𝐶௞𝑣௞ିଵ
௡ାଵ = 𝑣௞

∗

𝐴௞ =
2Δt𝐾௠,ఙೖାଵ

௡ାଵ

[𝐷
௡ାଵ

൧
ଶ

𝜎௞ − 𝜎௞ାଵ 𝜎௞ − 𝜎௞ାଶ

𝐶௞ =
2Δt𝐾௠,ఙೖ

௡ାଵ

[𝐷
௡ାଵ

൧
ଶ

𝜎௞ − 𝜎௞ାଵ 𝜎௞ିଵ − 𝜎௞ାଵ

𝐵௞ = 1 + 𝐶௞ + 𝐴௞                                         

They are tridiagonal equations, and the solution can be determined
without a matrix solver's request.

𝑢௡ାଵ 𝑘 = 𝑉𝐻 𝑘 𝑢௡ାଵ 𝑘 + 1 + 𝑉𝐻𝑃 𝑘

𝑣௡ାଵ 𝑘 = 𝑉𝐻 𝑘 𝑣௡ାଵ 𝑘 + 1 + 𝑉𝐻𝑃1 𝑘

𝑉𝐻 𝑘 =
𝐴௞

𝐵௞ −  𝐶௞𝑉𝐻 𝑘 − 1

𝑉𝐻𝑃 𝑘 =
𝑢௞

∗ + 𝐶௞𝑉𝐻𝑃 𝑘 − 1

𝐵௞ −  𝐶௞𝑉𝐻 𝑘 − 1
, 𝑉𝐻𝑃1 𝑘 =

𝑣௞
∗ + 𝐶௞𝑉𝐻𝑃 𝑘 − 1

𝐵௞ −  𝐶௞𝑉𝐻 𝑘 − 1

Vertical discretization 



Tracer equations (temperature, salinity, sediment concentration, etc.). For example, the temperature equation

𝑇௙ ௝

௡
= 𝑇௜

௡ +
𝜕𝑇௡

𝜕𝜆
∆𝜆 +

𝜕𝑇௡

𝜕𝜑
∆𝜑;

𝜕𝑇

𝜕𝜆
=

𝑅

Ω
೔்
೙

ර 𝑇௡𝑑𝜑;       
𝜕𝑇

𝜕𝜑
=

𝑅

Ω
೔்
೙

ර[𝑇௡(𝑐𝑜𝑠𝜑)
೔்
೙]𝑑𝜆;     

1. The second-order upwind scheme:

2. Total variational diminishing (TVD) scheme (Dr. O. A. Nøst’s team, Akvaplan-niva, Norway):

𝑇௙ = 𝑇௖ +
1

2
𝜓(𝑇ௗ − 𝑇௖) 𝜓 =

      1                                                Central difference       
  0                                                First−order upwind

Liner function of r =
𝑇௖ − 𝑇௕

𝑇ௗ − 𝑇௖
  Second−order upwin𝑑

Flux limiters:
SUPERBEE:  𝜓 = 𝑚𝑎𝑥 (0, 𝑚𝑖𝑛 1,2𝑟 , 𝑚𝑖𝑛(2, 𝑟))
MINMOD:       𝜓 = 𝑚𝑎𝑥 (0, 𝑚𝑖𝑛 1, 𝑟 )

MUSCL:          𝜓 =
𝑟 + 𝑟

1 + 𝑟

TCE

𝜕𝑇𝐽

𝜕𝑡
+

1

𝑅𝑐𝑜𝑠𝜑

𝜕 𝑢𝐽 𝑇

𝜕𝜆
+

𝜕 𝑣𝑐𝑜𝑠𝜑 𝐽𝑇

𝜕𝜑
+

𝜕𝜔𝑇

𝜕𝑟
 =

𝜕

𝜕𝑟

𝐾௛

𝐽

𝜕𝑇

𝜕𝑟
+ 𝐽𝐹்

  𝑅் ௜
௡=

1

𝑅𝑐𝑜𝑠𝜑
 

𝜕 𝑢𝐽 𝑇

𝜕𝜆
+

𝜕 𝑣𝑐𝑜𝑠𝜑 𝐽𝑇

𝜕𝜑
௜

௡

+
𝜕𝜔𝑇

𝜕𝑟
− 𝐽𝐹் ௜

௡
Step 1:  𝑇𝐽 ௜

∗ = 𝑇𝐽 ௜
௡ −

∆𝑡

Ω௜
் ඵ 𝑅் ௜

௡

ஐ೔
೅

𝑅ଶcosφ𝑑𝜆𝑑𝜑 (Explicit);  

Step 2:  
𝑇𝐽 ௜

௡ାଵ − 𝑇𝐽 ௜
∗

Δ𝑡
=

∆

∆𝑟

𝐾௛ ௜
௡

𝐽௜
௡

∆𝑇௜
௡ାଵ

∆𝑟
 (𝐈𝐦𝐩𝐥𝐢𝐜𝐢𝐭) ඵ 𝑅் ௜

௡

ஐ೔
ೠ

𝑅ଶcosφ𝑑𝜆𝑑𝜑 = ර 𝑣ே ௝
௡𝐽௝

௡ 𝑇௙ ௝

௡
𝑑𝑠 + ඵ

𝜕𝜔𝑇

𝜕𝑟
ஐ೔

ೠ

𝑅ଶcosφ𝑑𝜆𝑑𝜑 − ඵ 𝐽௝
௡ 𝐹் ௝

௡

ஐ೔
ೠ

𝑅ଶcosφ𝑑𝜆𝑑𝜑

𝑢, 𝑣𝑐𝑜𝑠𝜑

𝑢, 𝑣𝑐𝑜𝑠𝜑𝑢, 𝑣𝑐𝑜𝑠𝜑

𝑢, 𝑣𝑐𝑜𝑠𝜑 𝑢, 𝑣𝑐𝑜𝑠𝜑

𝑢, 𝑣𝑐𝑜𝑠𝜑

T

T

T

T

T

TT

T

T

T

c dfj is the triangle centroid ID, and i is the index of the central node of Ω
೔்
೙. Ω

೔்
೙ is the area where 𝑇௙ is calculated.  

Determining 𝑇௙

⇒
𝑇𝐽 ௜

௡ାଵ − 𝑇𝐽 ௜
௡

∆𝑡
= − 𝑅் ௜

௡ +
∆

∆𝑟

𝐾௛ ௜
௡

𝐽௜
௡

∆𝑇௜
௡ାଵ

∆𝑟

For the inflow, Ω
೔்
೙ is the area determined by the elements with the i node in the upstream region

Current versions of FVCOM
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𝑑𝑢𝐷

𝑑𝑡
+

𝜕𝑢𝜔

𝜕𝜎
+ 𝑅௨ =

1

𝐷

𝜕

𝜕𝜎
𝐾௠

𝜕𝑢

𝜕𝜎

𝑑𝑣𝐷

𝑑𝑡
+

𝜕𝑣𝜔

𝜕𝜎
+ 𝑅௩ =

1

𝐷

𝜕

𝜕𝜎
𝐾௠

𝜕𝑣

𝜕𝜎

Updating FVCOM with hybrid Eulerian-Operator-Integration-Factor Splitting (OIFS) method as an alternative solver option. 

3(𝑢𝐷)∗ − 4(𝑢෤𝐷෩)௡ + (𝑢෤𝐷෩)௡ିଵ

2𝛿𝑡
+ 𝑅௨ = 0

 
3(𝑣𝐷)∗ − 4(𝑣෤𝐷෩)௡ + (𝑣෤𝐷෩)௡ିଵ

2𝛿𝑡
+ 𝑅௩ = 0

൫𝑢𝐷)௡ାଵ − 𝑢𝐷 ∗

Δ𝑡
=

1

𝐷

𝜕

𝜕𝜎
𝐾௠

𝜕𝑢

𝜕𝜎
−

𝜕𝑢𝜔

𝜕𝜎
  

൫𝑣𝐷)௡ାଵ − 𝑣𝐷 ∗

Δ𝑡
=

1

𝐷

𝜕

𝜕𝜎
𝐾௠

𝜕𝑣

𝜕𝜎
−

𝜕𝑣𝜔

𝜕𝜎

𝑑

𝑑𝑡
=

𝜕   

𝜕𝑡
+

𝜕𝑢  

𝜕𝑥
+

𝜕𝑣  

𝜕𝑦

Note: Use the 𝜎-coordinate equation to explain how this
method works. The FVCOM code is modified based on the
generalized terrain-followed spherical and Cartesian
coordinates

Step 1:  Solve the horizontal terms using the 
2nd-order backward OIFS method. 

Step 2:  Solve the vertical diffusion and advection terms implicitly 
by following the algorithm used in the current version of FVCOM. 

Here,
• 𝑅௨ and 𝑅௩ do not include terms of horizontal advection 

on terms.  

• 𝛿𝑡 is the Lagrangian time step.

• 𝑢෤ and 𝑣෤ are the x and y components of the Lagrangian 
velocity.

• Moving the vertical advection to the vertical diffusion equation to avoid
the OIFS solvers in two distinct motion scales in the horizontal and
vertical.

• Determining the Lagrangian velocity at the nth and (n-1)th time steps
using the OIFS method can avoid deficiencies in Lagrangian tracking.
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Similarities and differences between  semi-Lagrangian and OIFS methods  

• Both solve the conservative advection equations to determine the Lagrangian velocity: 
ௗ௨

ௗ௧
= 0 and 

ௗ௩

ௗ௧
= 0.

• The semi-Lagrangian method uses forward/backward particle tracking on characteristic lines. 

• The OIFS method solves the conservative advection equations in the Eulerian space (Maday et al. 1990). 

An example to illustrate the similarities of these two methods

Let us consider a one-dimensional case, for example. 

𝑑𝑇

𝑑𝑡
= 0

For the semi-Lagrangian method, we have:

𝑑𝑇

𝑑𝑡
= 0; 

𝑑𝑥

𝑑𝑡
= 𝑢 ⟹ 𝑥ௗ = 𝑥௜ − 𝑢Δ𝑡, ⟹ 𝑇 𝑥ௗ, 𝑡௡ = 𝑇 𝑥௜ − 𝑢Δ𝑡, 𝑡௡          

For OIFS method, we have: 

𝑇 𝑥ௗ = 𝑇 𝑥௜ −  Δ𝑡𝑢
𝜕𝑇

𝜕𝑥
⟹

𝑇 𝑥ௗ − 𝑇 𝑥௜

Δ𝑡
= − 𝑢

𝜕𝑇

𝜕𝑥

This equation can be obtained using the Taylor expansion from the above semi-Lagrangain equation , i.e.

𝑇 𝑥ௗ, 𝑡௡ = 𝑇 𝑥௜ − 𝑢Δ𝑡, 𝑡௡ = 𝑇 𝑥௜ −  Δ𝑡𝑢
𝜕𝑇

𝜕𝑥
⟹

𝑇 𝑥ௗ − 𝑇 𝑥௜

Δ𝑡
= − 𝑢

𝜕𝑇

𝜕𝑥
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The OIFS MethodThe semi-Lagrangian Method

• The success of the method relies on solving an advection
problem efficiently. Multi-advection operators can be
implemented.

• OIFS can take advantage of unstructured grids in the current
versions of FVCOM.

• The MPI/OpenMP parallelization methods, which are
seamlessly integrated into the current version of FVCOM,
can be directly applied to the OIFS method, ensuring
compatibility and ease of use.

• The departure point values do not rely on interpolation, as in
the semi-Lagrangian method, which could avoid the
numerical errors caused by interpolation.

• OIFS can be one option for FVCOM solvers without
changing the grid setup.

• Becomes increasingly more cost-effective with increasing
time-step. On a distributed-memory computer, the
departure point of a specific grid point may lie off-
processor.

• The online 2nd-order accurate 4th-order Runge-Katta
particle tracking program in FVCOM can be directly used
for the forward/backward tracking to determine the
departure point. However, particle tracking requires the
treatment of various open and solid boundaries, which can
increase numerical uncertainty around boundaries.

• An interpolation stencil, which is a set of points used to
perform the interpolation, must be coded in the grid. The
interpolation accuracy depends on the interpolation
scheme, with high-order interpolation functions being
preferred for their accuracy.

Advantages and Challenging of Implementing semi-Lagrangian and OIFS Methods into FVCOM
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The approaches used for Step 1

3(𝑢𝐷)∗ − 4(𝑢෤𝐷෩)௡ + (𝑢෤𝐷෩)௡ିଵ

2𝛿𝑡
+ 𝑅௨ = 0

3(𝑣𝐷)∗ − 4(𝑣෤𝐷෩)௡ + (𝑣෤𝐷෩)௡ିଵ

2𝛿𝑡
+ 𝑅௩ = 0,  

(𝑢𝐷)∗=
2

3
(𝑢෤𝐷෩)௡ −

1

6
(𝑢෤𝐷෩)௡ିଵ −

2

3
𝛿𝑡𝑅௨  

(𝑣𝐷)∗=
2

3
(𝑣෤𝐷෩)௡ −

1

6
(𝑣෤𝐷෩)௡ିଵ −

2

3
𝛿𝑡𝑅௩ 

𝜕𝐷𝑢

𝜕𝑡
= −

𝜕𝐷𝑢𝑢

𝜕𝑥
+

𝜕𝐷𝑣𝑢

𝜕𝑦

𝜕𝐷𝑣

𝜕𝑡
= −

𝜕𝐷𝑢𝑣

𝜕𝑥
+

𝜕𝐷𝑣𝑣

𝜕𝑦

Determining the backward Lagrangian velocities at the nth and (n-1)th time steps by solving the two-dimensional advection 
equation within the time interval of  𝑡௡ < 𝑡 ≤ 𝑡௡ାଵ:

ඵ න
𝜕𝐷𝑢

𝜕𝑡
𝑑𝜎𝑑𝑥𝑑𝑦

ఙೖ

ఙೖశభஐ

= − ඵ න
𝜕𝐷𝑢𝑢

𝜕𝑥
+

𝜕𝐷𝑣𝑢

𝜕𝑦

ఙೖ

ఙೖశభஐ

𝑑𝜎𝑑𝑥𝑑𝑦 ⟹    
𝜕𝐷𝑢

𝜕𝑡
= −

1

Ω
ර(𝐷𝑢) 𝑣௡𝑑𝑙

ඵ න
𝜕𝐷𝑣

𝜕𝑡
𝑑𝜎𝑑𝑥𝑑𝑦

ఙೖ

ఙೖశభஐ

= − ඵ න
𝜕𝐷𝑢𝑣

𝜕𝑥
+

𝜕𝐷𝑣𝑣

𝜕𝑦

ఙೖ

ఙೖశభஐ

𝑑𝜎𝑑𝑥𝑑𝑦 ⟹     
𝜕𝐷𝑣

𝜕𝑡
= −

1

Ω
ර(𝐷𝑣) 𝑣௡𝑑𝑙

Note: One can solve these two equations using the same 2nd-order Runge-Katta explicit method from the current version
of FVCOM with a sub-time step within the time interval of 𝑡௡ < 𝑡 ≤ 𝑡௡ାଵor implementing an implicit Runge-Katta
method.
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1. Explicit solver with a sub-time step within the time interval of 𝒕𝒏 < 𝒕 ≤ 𝒕𝒏ା𝟏

The current version of FVC OM has a 2nd KR integration method to solve the horizontal advection terms. The difference here is that we only
solve the horizontal advection equations over the time interval of 𝑡௡ < 𝑡 ≤ 𝑡௡ାଵ. One can easily use the same explicit 2nd KR method to
solve the conservative advection equations.
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According to the momentum
conservation, the Lagrangian
velocity at nth and (n-1)th
time steps equals

(𝑢෤𝐷෩)௡= 𝐷෡𝑢ො
ଵ
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And
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ଶ

௡ାଵ

This approach can increase the 
maximum CFL number.
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2. Implicit solver with a sub-time step within the time interval of 𝒕𝒏 < 𝒕 ≤ 𝒕𝒏ା𝟏

Solving the advection equation using the tracer control element using the
combined implicit TVD (spatial) and RK (time integration) algorithms
(Note: This helps reduce the matrix size for the implicit solver).

For momentum equation,

Step 1: interpolate the velocity from individual triangular centroids to the triangle’s nodes.
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𝑁𝑇(𝚥)̂: the total number of the surrounding triangle with a connection to the jth node. 
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Step 2: Construct the matrix based on the finite-volume control element 
centered at the tringle’s nodes.

𝑣௡ is the normal velocity calculated by interpolation 
or extrapolation between the time interval n-1 and n. 

Introducing the second-order accuracy of the total variational diminishing (TVD)
method to construct the matrix for 𝑢௡ାଵ and 𝑣௡ାଵ.
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Flux limiters
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They are tridiagonal equations, and the solution can be
determined without a matrix solver's request.
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Updates of the code modifications

Contributions Team members

Leading the development of implementing the OIFS methods: the code modification and benchmark 
tests. 

Dr. S. Li

Supervising the developments in numerical schemes and code structures.Dr. C. Chen

Modifying the implicit solver of the diffusion-advection equation: the code modification and 
benchmark tests. 

Dr. J. Qi

Supervising the new code parallelization. Dr. G. Cowles 

Team members and their contributions

Completions or ongoing tasksTime

Completed numerical algorithm designs in Mathematics. March-April 2024

Completed the code modification to include the vertical advection in the implicit solver and 
conducted an initial benchmark test by comparing it with the current version of FVCOM.  

May-June 2024

Completed the code development of the implicit OIFS method. May-June 2024

• Test the implicit OIFS method on a benchmark test problem and evaluate the code by comparing 
the results with the current version of FVCOM.

• Continue to debug the implicit diffusion-advection solvers for benchmark test problems.  

July-August 2024



Next-generation FVCOM

Example: Comparisons between the implicit vertical diffusion-advection solver and upwind and 
TVD/MPDATA solvers.

Upwind scheme

TVD/MPDATA scheme

Implicit vertical advection  
scheme

Temperature Salinity
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Example: Comparisons between the implicit vertical diffusion-advection solver and upwind and 
TVD/MPDAT solvers.



Update of MPI/Open MP code debugging

Wall time

Subroutine
Threads: 1
Task(s):  4

Threads: 1
Task(s):  2

Threads: 4
Task(s):  1

Threads: 2
Task(s):  1

Threads: 1
Task(s):  1

0.03140.05980.04370.07780.1179SWOMPU1

0.04820.06940.03220.05550.1008ADV_N

0.05520.10550.16360.16360.2073SWOMPU2

Total

0.16950.27700.26690.32500.4524SWCOMP

0.19280.31710.32590.39010.5291internal_step

Initial

FVCOM
modules

SWAVE
module

Time 
End?

Yes

No

Finish

OpenMP starts

OpenMP finishes

Implementation was  initially done for one  OpenMP parallel block 
in the SWAVE subroutines to reduce the start-up time of OpenMP 
threads

The hotspots of the 
FVCOM-SWAVE 
model are the 
subroutines in the 
SWAVE module.

OpenMP for FVCOM-SWAN model Updated from Dr. J. K. Chen

Time-consuming statistics in each step of the FVCOM-SWAN 
model with OpenMP



• The new OIFS solvers, which are being implemented in FVCOM, will
expand FVCOM’s capability of solving the problem with a meter-order
resolution with a large CFL number or no CFL constraints.

• The next-generation FVCOM is designed to cater to a wide range of
user needs. It will provide users with various multi-solvers, including
RK-upwind, TVD/MPDATA, and OIFS. The inter-solver comparisons
could help the solver’s selection with the required accuracy.

• The combined MPI/OpenMP parallelization could significantly improve
the FVCOM’s computational efficiency.

Summary


