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> A brief review of current FVCOM mode-split and semi-implicit solvers.
» The next-generation FVYCOM: Hybrid Eulerian-Lagrangian, semi-
implicit/implicit time integration. In particular,
* The second-order backward difference time integration scheme (BDF2).

* The operator-integration-factor splitting (OIFS) algorithm for horizontal advection.
* Fully implicit schemes for vertical advection.

* Semi-implicit scheme for water elevation.

» Update of MPI-OpenMP combined parallelization.
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2-D and 3-D Wet/Dry Treatment Methods |— FVC OM

Forcings:
Emerged and/or Submerged Dike-Groyne Modules |__| ) o )
Tides (equilibrium and from open boundaries)

Winds or wind stresses, air pressure gradients

Nudging and Ol Assimilations | | | Njot heat flux/shortwave radiation
Precipitation/evaporation
Reduced/Ensemble Kalman Filters (RRKF, EnKF, River discharges, groundwaters, and WWTP outfalls
ETKEF, EnSKF, SEIK) Open boundary fluxes

Polar stereographic projecting-spherical
coordination nested module at North Polar

Options to Select Multi Radiation Open Boundaries

<4— ViSiT monitoring
One-way and Two-way Nesting based on EMSF |__

EMSF coupler with Multi-domain WRF (—
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Vertical Coordinates FVCOM Solvers

Generalized terrain-following coordinate transformations
based on the approach described in Pietrzak et al. (2002)
(Ocean Modeling, 3, 173-205).

Time integration:
1) Mode-splitting and 2) semi-implicit solvers

Mode-splitting:

o-coordinate i s-coordinate 2-D barotropic mode (AT) and 3-D baroclinic mode
: (AT)), a recommended ratio of AT,/ATgis 10.
\ .
Advantages: Easily set; able to run a 2-D model

separately; does not depend on libraries of matrix
solvers, etc.

Disadvantage: 2D-3D mode adjustments could cause
numerical oscillations in the deep ocean.

A hybrid coordinate

Semi-implicit:

. Waters.hed, FVCOM is solved in a single time step (AT))

* Inter-tidal zone, | . : : ..

 Flooded areas, Uniform thicknesses in surface mixing and Advantage: faster, no adjustment needed, suitable for
bottom boundary layers basin and global applications

with a mean
water depth
of <0

* Avoiding artificial gradient due to
precipitation via evaporation
e SST/SSS assimilation at the same depth.

Disadvantage: Requires PETSc (scalable sparse matrix
solver library).
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Limitation in Applications

Remarks on FVCOM Performances

Merits

Unstructured-grid.
Volume conservations.
Hydrostatic/non-hydrostatic dynamics.

Options for multi-finite-volume advection and time integration
schemes.

Simple module structures of the source.

Well-validated via various benchmark test problems through
inter-model comparisons with ROMS.

Computationally efficient as finite-difference models.

Coupled fully with ice, sediments, surface waves, vegetation,
WREF, and ecosystem/water quality models.

Multiple choices in data assimilation, including nudging, OI, and
various Kalman filters.

Successful application to estuaries, coastal to global ocean.

Allows a straight wall in the terrain-following coordinates

Challengin

* Both mode-split and semi-implicit integration
solver 1s constrained by the Courant-
Friedrichs-Lewy (CFL) condition. In general,

At

As

u: the magnitudes of the velocity

At: the internal time step

As: the horizontal resolution.

Cmax ~1, when either mode-splitting or semi-
explicit is used.

When applying FVCOM to an estuary with a
horizontal resolution of a few meters, the time
step is required to be very small, especially in a
narrow water passage with strong flow.
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Solution 1: Solution 2:
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An Illustrative Example of the Eulerian-Lagrangian Method

The diffusion equation for a concentration C is given as

dc =K, +
- H(axz ayz)

9%C 02
Discretizing using Lagrangian inverse tracking on the left side and Eulerian central difference

dt
scheme on the right side, we have
Ci”‘ijl—C"(P)= 1+1] ZC" + C 1]_I_CU 1 ZCn + U+1)
At H sz Ayz
Then, C at the ith and jth node can be determined by
CIt = EP) + "2 (P j=2CT + Py ) + 225 (€1 =2CT + Cla)
. 1) Find the location of P using the Lagrangian inverse tracking
n
The key point is how to determined C™(P). Two steps {2) Determine C at P at the time step n by interpolation.
dx
—uptt = x, = x;; — A
P(x,y) = [(x; - upftae), (viy - n+1At)]
dt —vt =y, = x - vl AL
After using the velocity at the time step (n+1) backward to find P, one can use the interpolation method to determine C™(P) from

surrounding nodes.
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Merits:

No advection equations are involved, so it does not have numerical dispersion!
It is numerically stable with a larger CFL number.

Allowing a larger time step in the numerical integration.

Challenging:

Numerical diffusions due to inaccurate Lagrangian particle tracking and interpolation could be significant.
Implementing the high-order particle tracking and interpolation methods, like the 4th-order Runge-Katta method
or the Discontinuous Galerkin method, could be helpful.

Computational efficiency.
Boundary treatments.
Particle path lines often intersect and/or disperse, making it difficult to resolve the fluid interactions accurately.

Ensuring particle tracking accuracy in sharp gradient areas is crucial, as it can significantly impact the overall
simulation results.

Since the horizontal velocity is usually one or two orders of magnitude larger than the vertical velocity, the
characteristic trajectories in a 3-D space are at distinct scales of the motion in the horizontal and vertical.
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FVCOM-SWAVE “
Explicit

At = 5 sec

SWAVE
Semi-Lagrangian -

At = 30 sec

1.0

0.8 4

0.6

H; (m)

0.4 +

0.2

FVCOM (timestep = 5 seconds)
Semi_Lagrangian scheme (timestep = 60 seconds)
Semi_Lagrangian scheme (timestep = 30 seconds)

Semi_Lagrangian scheme (timestep = 5 seconds)

T T :
30 40 50 60

Time (minutes)

0.8 1

0.6 4

H (m)

0.4 +

0.2

0.0

FVCOM (timestep = 5 seconds)
Semi_Lagrangian scheme (timestep = 60 seconds)
Semi_Lagrangian scheme (timestep = 30 seconds)

Semi_Lagrangian scheme (timestep = 5 seconds)

T T T
30 40 50

Time (minutes)

60

The time required
(1 processor)

schomes | Tuna thours)__

FVCOM- 0.83
SWAVE

explicit

SWAVE- 3.0
Semi-Lag

(60 sec)

SWAVE- 6.0
Semi-Lag
(30 sec)

SWAVE 36
Semi-Lag
(5 sec)
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The governing equations in the generalized spherical coordinates are given as

"’a”t’ + Rcis(p [ag;’ + "’”(”;;S“’”] + "’;’T“ - “Tj”tamp + WT”’ — fv] + f'w] X .
S L W) (L R - (0 00 2 (2, y
[l 2] 20 g 4 22 x
— -G Lo 0 (2 20, L(120 ) 208 2 (%) 1, <

2 [P g Slcet] g (DL 2842 (Sa00)

% Rc;sqo[au;l +a(vws<p)]]+ =0

Tt R = (PR wheej=2oy (@) [ 1O

+

g 1 d(uj)s , d(vcosp)]S owS i(ﬂa_S)
at Rcosqo[ oA dp ] t T or ] +]FS

p=p(T,SP)
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Grid. Non-overlapping unstructured-grid
triangles
u, vcosq: at centroids

¢,w,w,T,S, p:at nodes
N: The total centroid number
M: The total node number

[x(D),y()],i = 1:N
[xn(i)rYn(i)]:j =1:M

On the ith triangle, three nodes are
defined as

N;(j), j=1:3; counted clockwise.

On the jth node, the total number of the
surrounding triangles connected to this
node is defined as NT(j), counted by
NB;j(m), and

NB;(m) = 1: NT(j)

The horizontal

F:{,0,w,T,S,p,q%q%l¢,

I

Grld de&gns

|

The vertical

w =0
| i
-- 05Ar; ---uv TS oo A
| }
w
| T
-—- 05Ar-==un T, S -=-- Arp_

o

I'=r;

Cell-centered Cell vertex median

&

Avoid the errors in forcings
due to various triangle sizes
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To simplify the description of numerical algorithms,
we use the hydrostatic momentum equations, for

example.
6uD+R
ot o
avp 2 (Km %Y 1k 5
—_Dar v]=$ Bm OV
dt Dor\ J or
Here,

In the current version of FVCOM, the momentum equations are solved numerically in two steps. In particular,

(uD)™**—(uD)* 10 p ou
-7 71)

(uD)**! — (uD)*+(uD)*—(uD)™ 10 ou ou
At TR =550\ mog At ™ 90
(vD)"*1 — (vD)*+(vD)*—(vD)" 19 v WDy —@Dy' 194 ( ov
At Ry = 5o | Km5o At Dac\ ™ac

Step 2: Implicit: Absolute stable, no
constrained by the CFL condition
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1. Explicit method

Current versions of FVCOM

e

The advection terms are calculated by an upwind scheme with a modified Runge-Kutta time-stepping scheme for the 2-D mode and an

upwind or a modified Runge-Kutta scheme for the 3-D mode (Kobayashi, 1999).
ui(x',y") = i (", y") = wi(Xie, yic) + ai' (x"=xic) + bi' (V' = Yic)
vi(x,y) = @7 (x,y") = vilXic, yic) + af (X" = xic) + b7 (V' = ic)

a, a;,b*, b} are determined by a least-square method with velocity values at 4
cell centered points. x. and y, are location of the triangular central cell.

The x and y components of the horizontal advection are calculated numerically by

ADVU = Z we D vl ADVV = Z Vi Doy Uy L
-1

m=1
Uim, Vim: Velocities on edge m, v,,,,: normal velocity on edge, l,,: edge length, D, is

depth
Vom <0

m=0

v . .
¢}i(xiCl yic) ’ Unm < 0 _ ¢l;7(xlw ylc) ’
¢NBl-(m) (Xims Yim)»

me ¢11\1,Bi(m) (ximr Yim)r Unm = 0

Xim» Yim: cell-centered point of the surrounding triangle,
NB(m): the neighbor triangle, (x;., Vi.): the centered location of the ith triangle.

[t
-

x = Rcosp(A—2,);y = R(¢ — ¢,)

X = RcospcosA; y = Rcospsini

MCE:The momentum control element, a
triangle with u and vcosg at its centroid.
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For example, the surface elevation is determined by the continuity equations given as

f@(l-Rz Dide = ff 1 aﬁD+6(ﬁcos<p)D R? Jid
Jt cosparcy = Rcos<p[6/1 do IR cospdadg

al ol

L l

a¢; R
= E)_Ztl = ——([jg uDde' — jﬁ (vcospD)dA'] Ax = RcosdA, Ay = Rdg
QO

Numerically integrated using the modified Runge-Kutta time-stepping scheme with a second-order
approximation:

0 _ . p0 _
(g =¢j Re =R;
NT NT
R? ZZ U)(Ame 1vm_AYZm 1um)D2m 1+Z U)(AXvam AYZmu?n)ng

+1 _ 74
n _(j

The same Runge-Kutta scheme is used for horizontal advection terms in the momentum equations
o _,n,.,0__n,p0 _ . p0 —
u; =u; ;v = v, Ry = Ry; Ry =Ry

k-1
k _ .0 _ kAtRy ~ gk _ 0 kAtR . n+1 4. . n+l _ . 4
U =u; —« W,vi—vl —%— U = U v =

297 l

o e

Current Vers1ons of FVCOM

—— Efz;: 5

U, vCos

TCE: The tracer control
element: an area with a node
as a center and bounded
triangles with w and vcosg
at its centroid.
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Step 2: Vertical diffusion terms:

TO0k-1
D n+1 _ D
Ok+1 Ok+1 o @ n+1_ uﬁfll uk
TX Mozly, —Tk=itdk Tk*k+1

ﬂ f[(vD)ml (vD)k]d dQ = ﬂ f[D aa< )]dadﬂ Ly ko T2 3

Ok+1 Ok+1
041 m% n+l . up uﬁi
[ n+1 n+1 n+1 _ n+17 Op+0p O O
= (D)1= (D)} + 2At K+ Uply — U ne1 Yoo T U zlg,,, R —
m,o m,o
D™ (oy — Opy1) | 7 Ok—1 — Okt 1 o) — Ok4z | T Uk+1
[ n+l _ . n+1 n+l _ o n+1] T O0k+2 1 1 17ati
— D)1= (vD)} + 2At 1 Vke1 ~ Vk 1 Uk vl Vertical discretization
m,o m,o
D™ (o — o+1) | K Ok—1 — Ok41 T op — Ok4z |
f 2ALKIF u™ (k) = VH(k)u™ (k + 1) + VHP (k)
Ak = 2 k
1

—Auiii + Brup Tt = Ceuit = ug (D™ (01 = 01c41) (0% = Ocs2) v"1(k) = VH(k)v™* 1 (k + 1) + VHP1(k)

) 20K "

Ck = 2 - Ak
1

—Avitl + Bvptt — vt = v, D" (o — 041 (k-1 — Oesr) VH(k) = B, — C.VHG—1D)

\Bk = 1 + Ck + Ak ] k k

. . . . VHP (k) U+ GVHP(k — 1) VHPL(E) Vi + CVHP(k — 1)

They are trld?agonal equations, and the solution can be determined ~By— CVH(k—1)" " B,— CVH(k—1)
without a matrix solver's request.
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T = ‘gf;}’ S

Tracer equations (temperature, salinity, sediment concentration, etc.). For example, the temperature equation

aTJ 1 [0)T  d(vcosp)]T] 0wl 0 (K,d0T (T]);l“—(n)" . (K)P AT/
at Rcosgo[ A + dp ]+ or __<T§>+]FT:> At ~(Rp)7 + <]" Ar )

- 1 d(u)T Jd(vcosp)]T dwT -
Step 1: (T)); = (T} — % ff(RT)? R?cos@dAdg (Explicit); (Rp)i'= P [ a1 B ] — (JFr)i

af RV

T n+l _ T * K n Tn+1
Step 2: L IDE_ (( Wi >(Imp11c1t) ff (R R*cospdide = o)} (Ty) s + ff 2 Recosodidy - [[ 17} Rocosodady
" % . TCE
Determining Tr 1. The second-order upwind scheme: T T

(T) —T"+6T A/1+6TnA or__~k and . T_R jﬁTn di;
f oA ap -7 0L Qpn @ 09 Qpn [T" (cos@)rpldA;

J s the triangle centroid ID, and i is the index of the central node of Q7n. (7 is the area where Ty is calculated.

For the inflow, QTi” is the area determined by the elements with the i node in the upstream region

2. Total variational diminishing (TVD) scheme (Dr. O. A. Nost’s team, Akvaplan-niva, Norway):

1 Central difference Flux limiters:
_ 1 0 First—order upwind SUPERBEE: ¢ = max(0,min(1,2r),min(2,r))
Tr=Te+59(Ta-T) o= T.—T, MINMOD: 3 = max(0, min(1,7))

Liner function of r= Second—order upwind

r+|r|
1+ |r|

Td _Tc

MUSCL: ¢ =
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Updating FVCOM with hybrid Eulerian-Operator-Integration-Factor Splitting (OIFS) method as an alternative solver option.

duD N Juw +R = 19 ou Note: Use the o-coordinate equation to explain how this
dt do ““"Daoc\ ™ada i _a() + du() + v () method works. The FVCOM code is modified based on the
dt ot 0x oy generalized terrain-followed spherical and Cartesian
dvD N dvw LR = 10 dv coordinates
dt 9o ¥ Dadog\ Mdo
Step 1: Solve the horizontal terms using the Step 2: Solve the vertical diffusion and advection terms implicitly
ond_grder backward OIFS method. by following the algorithm used in the current version of FVCOM.
* ~\N ~Nyn—1
2 At Do\ Moo do
3wD)' —4@D)" + @D _ (D) —(wD)' 19 ( 0v\ dve
25¢ Ty = At “Dos\"™ds) Tao
Here, . ) : . . . . :
« R andR.. do not include terms of horizontal advection * Moving the vertical advection to the vertical diffusion equation to avoid
01L1L terms.v the OIFS solvers in two distinct motion scales in the horizontal and

vertical.

* 4t 1s the Lagrangian time step.
* Determining the Lagrangian velocity at the n™ and (n-1)* time steps

* U ellndf are the x and y components of the Lagrangian using the OIFS method can avoid deficiencies in Lagrangian tracking.
velocity.
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Similarities and differences between semi-Lagrangian and OIFS methods

: : : : : ., d d
* Both solve the conservative advection equations to determine the Lagrangian velocity: d—? = 0 and d—: = 0.

* The semi-Lagrangian method uses forward/backward particle tracking on characteristic lines.

* The OIFS method solves the conservative advection equations in the Eulerian space (Maday et al. 1990).
An example to illustrate the similarities of these two methods

Let us consider a one-dimensional case, for example.

dT

T 0

For the semi-Lagrangian method, we have:

dT dx

—=0;, —=u= x4 = x; —ult,= T(xy4,t,) = T(x; — ult, t,)

dt dt

For OIFS method, we have:

T(xg) =T(x;) — Atug—i = T(Xd)At TG = — ug—’i

This equation can be obtained using the Taylor expansion from the above semi-Lagrangain equation , i.e.
0T T(xq) —T(x) aT

T = T(x; — ul =T(x;) — Atu—= E
(xdrtn) (xl u trtn) ('xl) tu Ox At uax
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Becomes increasingly more cost-effective with increasing
time-step. On a distributed-memory computer, the
departure point of a specific grid point may lie off-
processor.

The online 2™-order accurate 4%-order Runge-Katta
particle tracking program in FVCOM can be directly used
for the forward/backward tracking to determine the
departure point. However, particle tracking requires the
treatment of various open and solid boundaries, which can
increase numerical uncertainty around boundaries.

An interpolation stencil, which is a set of points used to
perform the interpolation, must be coded in the grid. The
interpolation accuracy depends on the interpolation
scheme, with high-order interpolation functions being
preferred for their accuracy.

The success of the method relies on solving an advection
problem efficiently. Multi-advection operators can be
implemented.

OIFS can take advantage of unstructured grids in the current
versions of FVCOM.

The MPI/OpenMP parallelization methods, which are
seamlessly integrated into the current version of FVCOM,
can be directly applied to the OIFS method, ensuring
compatibility and ease of use.

The departure point values do not rely on interpolation, as in
the semi-Lagrangian method, which could avoid the
numerical errors caused by interpolation.

OIFS can be one option for FVCOM solvers without
changing the grid setup.
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The approaches used for Step 1

3(uD)* — 4(@D)" + (aD)"~1 Dy= 2 (aDY —  aby-1 — 2 seR
3wD)" — 4(#D)" + (#D)" ! = (vD)'= 2 (8D)" ¢ (3D)""* — 2 51R
+R, =0, 6 3 v

26t

Determining the backward Lagrangian velocities at the n™ and (n-1)™ time steps by solving the two-dimensional advection
equation within the time interval of ¢, <t < t,,44:

@ _ <6Duu N 6Dvu> ﬂ j aD—udadxdy = ff j <6Duu 6Dvu> dodxdy
ot 0x [

dy

Ok+1 Ok+1

dDv dDuv dDvv 0Dv aDuv dDvv

2t - \Tox + 3y ﬂ j—dadxdy— ff ]( )dadxdy=>
Ok+1 Ok+1

Note: One can solve these two equations using the same 2"d-order Runge-Katta explicit method from the current version
of FVCOM with a sub-time step within the time interval of t,, < t < t,,,10or implementing an implicit Runge-Katta
method.
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i

1. Explicit solver with a sub-time step within the time interval of t,, < t < t,, ;4

The current version of FVC OM has a 2" KR integration method to solve the horizontal advection terms. The difference here is that we only
solve the horizontal advection equations over the time interval of t,, < t < t,+;. One can easily use the same explicit 2"d KR method to
solve the conservative advection equations.

Du 2 = (Duw)" — at A At 1 el

( A);H-Z ( )Tl Zﬂf(Du)n vr?dl — (Da);H-l — (Du)n f(D )n.|.E :ll+2 l
Dv 2 = (Dv)"™ — at A At e

( A);H-Z ( )Tl 20) D'UIl vrTlldl = (Di}):+1 — (Dv)n f(D )n.l.E :ll+2 I
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2. Implicit solver with a sub-time step within the time interval of t,, <t < t,,,1

Solving the advection equation using the tracer control element using the
combined implicit TVD (spatial) and RK (time integration) algorithms
(Note: This helps reduce the matrix size for the implicit solver).

For momentum equation,

Step 1: interpolate the velocity from individual triangular centroids to the triangle’s nodes.
NT())

(N () = NTG) NBZ u(NB))NB; = 1,2,....NT())
NTL(]) NT()): the total number of the surrounding triangle with a connection to the j node.
7(N;(Gn)) = NT(]) Z v(NB)) NB; = 1,2,....NT(}) o
NB;=1 Flux limiters
Step 2: Construc‘F the matrix based on the finite-volume control element max[0, min(1,2r), min(2,r)] Superbee
centered at the tringle’s nodes. max[0, min(1,n)] i
ZNT Y1 =
dDu ns; n+1 s |T'|
—_—=- —f(Du) vpdl = —— Z D™ug ™ v, Al = antt 4 o ¢ (@htt —antt) 1+ |r|
2NT -
oDv vn+1 — pntl + — vn+1 n+1 uc ub
————}g(Dv)vndl ——Z D51, Al ! ¢ w( ) Vi Ypasron =gt =5
Uy, 1s the normal velocity calculated by interpolation Introducing the second-order accuracy of the total variational diminishing (TVD)
or extrapolation between the time interval n-1 and n. method to construct the matrix for u™*1 and v™*1.
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Vertical diffusion and advection equations:

T P e | G

™ do do
Ok+1

[ n+1 n+1 n+1 n+17 n+1 n+1 n+1 n+1 n+1y -n+1
— (D)= (D)}, + 2At et Weet T8 g W T Wkt | (uey +up Do —(u™ Fugi) Okl
K7 D l(oy, — okrr) | K 0p_q — O, Mokt g — ¢ 2(0, — Op11)
kK~ Ok+1) | k-1~ Ok+1 k — Ok+2 | k — Ok+1
[ n+1 n+1 n+1 n+17 n+1 n+1 n+1 n+1 n+1 n+1
— (WD)I*'= (vD); + 2At Kt Vk-1 — Vg _ gntl Vk =~ Vk+1 (Weli v Do =T i) O]
v vEk D"1(gy —opi)| "k 01— 0O Mok+1 g — ¢ 2(0) — Ops1)
k — Ok+1) | k-1~ Ok+1 k — Ok+2 | k — Ok+1

A 4 Bt — Cogt = o They are tri.diagonal equations, and the solution can be
il S el determined without a matrix solver's request.

—Avigtl + Beoptt — Gl = g u™l(k) = VH(k)u™*1(k + 1) + VHP (k)
v"1(k) = VH(k)v"* 1 (k + 1) + VHP1(k)

Ay
By — CuVH(k — 1)

VH(k) =

u;, + C,VHP(k — 1) vi + C,VHP(k — 1)
- VHP1(k) =
VHP (k) By — CVH(k—1)’ () B, — CVH(k — 1)
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Team members and their contributions

Team members Contributions

Dr. S. Li Leading the development of implementing the OIFS methods: the code modification and benchmark
tests.

Dr. C. Chen Supervising the developments in numerical schemes and code structures.

Dr. J. Q1 Modifying the implicit solver of the diffusion-advection equation: the code modification and
benchmark tests.

Dr. G. Cowles Supervising the new code parallelization.

Updates of the code modifications

Completions or ongoing tasks

March-April 2024 Completed numerical algorithm designs in Mathematics.

May-June 2024 Completed the code modification to include the vertical advection in the implicit solver and
conducted an initial benchmark test by comparing it with the current version of FVCOM.
May-June 2024 Completed the code development of the implicit OIFS method.

July-August 2024 * Test the implicit OIFS method on a benchmark test problem and evaluate the code by comparing
the results with the current version of FVCOM.
* Continue to debug the implicit diffusion-advection solvers for benchmark test problems.
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Example: Comparisons between the implicit vertical diffusion-advection solver and upwind and
TVD/MPDATA solvers.

Temperature Salinity
T5; 16.. 11.?- IIS. |- 1 1;

35.

12 20.

Upwind scheme

TVD/MPDATA scheme

Implicit vertical advection
scheme
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Example: Comparisons between the implicit vertical diffusion-advection solver and upwind and
TVD/MPDAT solvers.

upwind scheme TVD/MPDATA scheme implicit vertical advection scheme
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OpenMP for FVCOM-SWAN model

il

FVCOM
modules
OpenMP starts
OpenMP finishes
The hotspots of the

FVCOM-SWAVE
model are the
Finish subroutines in the
SWAVE module.

= —> =

',

en MPEJGdeé{ debugging

5" — e

Updated from Dr. J. K. Chen

Implementation was initially done for one OpenMP parallel block
in the SWAVE subroutines to reduce the start-up time of OpenMP
threads

Time-consuming statistics in each step of the FVCOM-SWAN

model with OpenMP

Wall time

Subroutine Threads: 2 Threads: 4  Threads: 1 Threads: 1

Threads: 1

Task(s): 1 Task(s): 1  Task(s): 1  Task(s): 2 Task(s): 4
SWOMPUI 0.1179 0.0778 0.0437 0.0598 0.0314
ADV_N 0.1008 0.0555 0.0322 0.0694 0.0482
SWOMPU2 0.2073 0.1636 0.1636 0.1055 0.0552
Total
SWCOMP 0.4524 0.3250 0.2669 0.2770 0.1695

internal step  0.5291 0.3901 0.3259 0.3171 0.1928
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* The new OIFS solvers, which are being implemented in FVCOM, will
expand FVCOM’s capability of solving the problem with a meter-order
resolution with a large CFL number or no CFL constraints.

* The next-generation FVCOM 1is designed to cater to a wide range of
user needs. It will provide users with various multi-solvers, including

RK-upwind, TVD/MPDATA, and OIFS. The inter-solver comparisons
could help the solver’s selection with the required accuracy.

* The combined MPI/OpenMP parallelization could significantly improve
the FVCOM’s computational efficiency.



