
MAR513 Lecture 11:  Surface Wave Modeling
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Conditions:  
a) no rotation; b) incompressible; c) linear

P = Po + ¢p 

u =
dx

dt
;  v =

dy

dt
;  w =

dz

dt

The perturbation momentum and continuity 
equations can be written as 
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Boundary condition: 

At the bottom:  

At the free surface:  

w z=- H = 0

w z=0 =
¶z
¶t
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¢ p = A( t)ei( kx+ ly +mz)

Assume that the solution is 

A( t)(k 2 + l2 + m2) = 0 Þ since A( t) ¹ 0; then k 2 + l2 + m2 = 0

Therefore, 

 k 2 + l2 + m2 = 0 This is impossible!



¢ p = A( t)e[ i( kx + ly )+mz ] + B( t)e[ i( kx + ly )-mz]

Assume that the solution is 

k 2 + l2 = m2where 

At the bottom, w z=- H = 0;   
¶ ¢ p 

¶z
= -
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¶t
= 0

mA( t)e[ i( kx + ly )-mH ] + -B(t)me[ i( kx + ly )+mH ] = 0 Þ B( t) = A(t)e-2mH = A(t)e-2 k 2 + l 2 H

Instead, we will try 

¢ p = A( t)ei( kx+ ly )+mz

then, 

-( k 2 + l2) + m2 = 0 Þ m = ± k 2 + l2



So,  the solution can be written as 

¢ p = A( t)ei( kx+ ly ) (ez k 2 + l 2

+ e-2 H k 2 + l 2

e-z k 2 + l 2

)

    = 2A(t)eH k 2 + l 2

ei( kx + ly ) (e( z+ H ) k 2 + l 2

+ e-( H +z) k 2 + l 2

) / 2

    = A (t)ei( kx + ly ) cosh[ k 2 + l2 (z + H)]

At the surface, 
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Find the frequency ω.    Assume that  

A (t) = Aoe
- iwt

At the free surface, 
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w 2 = g k 2 + l2 tanh(H k 2 + l2 )



¢ p = Aoe
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w 2 = g k 2 + l2 tanh(H k 2 + l2 )

The solution of the surface gravity wave:

Phase speed: Assume that the total wave number  

k 2 + l2 = ko; ko = 2p/Lo ,  where Lo is the wavelength
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kx + ly -wt = costant
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They differ from the x and y component of vp
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The rule for the vector calculation is not applicable to determine the x and y 
components of phase speed. 



Short-wave approximation

koH>> 1,  H >> 1/ko~L: Deep-water waves  

In this approximation,  tanh (koH) ≈ 1,  cosh[ko(z + H)] »
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The phase speed equals 



Suppose that l = 0 (or we could choose a coordinate ststem in which l = 0)

¢ p = Aei( kx -wt )+kz

v = 0

¶u

¶t
= -

1

ro

¶ ¢ p 

¶x
= -

ikA

ro

ei( kx -wt )+kz

Þ u = uo(x,z)e- iwt Þ -iwuo(x,z)e- iwt = -
ikA

ro

ei( kx -wt )+kz

uo(x,z) =
kA

wro

eikx +kz Þ u = uo(x,z)e- iwt =
kA

wro

ei( kx -wt )+kz 

¶w

¶t
= -

1

ro

¶ ¢ p 

¶z
= -

kA

ro

ei( kx -wt )+kz Þ w =
kA

iwro

ei( kx-wt )+kz

z =
A

gro

ei( kx -wt )



¢ p = Acos(kx -wt)ekz       

z =
A

gro

cos(kx -wt)         

u =
A
ro

(
k
w

) cos(kx -wt)ekz

w =
A

ro

(
k

w
) sin(kx -wt)ekz

ì 

í 

ï 
ï 
ï 

î 

ï 
ï 
ï 

The real parts of the solution are given as 

The short-surface waves are trapped near the surface over a e-folding
vertical scale of 1/k. Therefore, the propagation of waves is not affected
by the bottom

Particle trajectories
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Particle trajectory in a deep-water wave is a circle and its radius decreases 
with depth.

Orbits are circular

The size of circle ~ A; k/ω; z;

The phase of waves propagates, 
but particles don’t;

Average over a wave period,  the 
velocity equals zero;

The phase speed is a function of 
the  wave number but does not 
depends on the water depth;

The waves are trapped near the 
surface.  In this deep-water, the 
hydrostatic balance is not valid. 



Long-wave approximation

koH << 1,  H << 1/ko~L:  Shallow-water waves

In this approximation,  tanh (koH) ≈ koH-1/3(koH)3….. ≈ koH
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The pressure and horizontal velocity are independent of depth, while the 
vertical velocity is a linear function of depth;

The phase speed is determined by total water depth, but independent of the 
wave number;

In the shallow water limit, the hydrostatic balance is valid

Particle trajectories
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The particle’s trajectory is an ellipse



Stoke’s drift velocity

The conclusion for the particle trajectories of the deep-water waves is only
valid for a linear model. The linear theory describes the wave motion of
“sinusoidal” function in the propagation direction. In the field of waves, the
average velocity of particle equals to zero. However, it is not true for finite-
amplitude gravity waves in a nonlinear system. In such a system, the particle
orbits are not closed and there is a slow mean drift of the fluid elements in the
direction of wave propagation: stokes’ drift!
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Suppose in an oscillated motion, the fluid element 
still keep its position near the initial location



Stokes’ drift velocity

In the zero-order approximation,   

uE = ul

In the first-order approximation,   

uE ¹ ul ,    the stokes'  velocity us ¹ 0



The Surface Wave Model (SWAN or FVCOM-SWAVE)

The evolution of wave spectra is determined by the wave action density
spectrum balance equation expressed as

(references: Booij et al. 1999, SWAN Team, 2006, Qi et al. 20008)

where N is the wave action density spectrum; t is the time;  is the relative
frequency;  is the wave direction.

Two spaces: the spectral space (, ) and in geographic space (x, y)

Stot = Sin + Snl 3 + Snl 4 + Sds, w + Sds, b + Sds, br

where Sin is the function for the wind-induced wave growth; Snl3 is the nonlinear transfer
of wave energy due to three-wave interactions; Snl4 is the nonlinear transfer of wave
energy due to four-wave interactions; Sds,w is the wave decay due to white capping; Sds,b

is the wave decay due to bottom friction; and Sds,br is the wave decay due to depth-
induced wave breaking.



Discrete Algorithms: 

SWAN (Simulating Waves Nearshore): The structured grid (rectangular
or curvilinear) and is solved by implicit schemes in both spectral and
geographic spaces (SWAN Team, 2006);

FVCOM-SWAVE: The unstructured grid (triangular) and is solved by the
Flux-Corrected Transport (FCT) algorithm in frequency space; the
implicit Crank-Nicolson method in directional space and options of
explicit or implicit second-order upwind finite-volume schemes in
geographic space (Qi et al., 2008). FVCOM-SWAVE is the unstructured
grid of SWAN at the second-order accuracy.

UnSWAN: A new unstructured grid version of SWAN developed by the
SWAN Team. At present, it is solved using the first-order accurate
discrete scheme.

FE-WAVE: A unstructured grid version of SWAN solved using the finite-
element method (Hsu et a., 2005). This is not an open-source code.



Test 1: Dispersion experiments

Hs (Significant wave height) = 1 m

 (frequency) = 0.1 Hz

SWAN-BSBT (1st order) SWAN-SORDUP (2nd order)

stationary wave only

SWAN-SL (3rd order)
Upwind

UG-SWAN (2nd order)

Examine the numerical 
dispersion for the wave 
propagation 



Test 2-a: Wave and Current Interaction
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Case a:
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Case b:

Results for significant wave height



Test 2-b: Wave and Current Interaction
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Case c:

30o
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Case d:

30o

Results for significant wave height

Direction

Direction



Test 3: Wave propagating onto the shelf

Cg

Cg

Case a:

Case b:



A Test Case for the Gulf of Maine



A zoom-in view of the Gulf of Maine domain



Forcing: 

GOM-WRF hindcast wind fields (with a resolution of 9 km) [one
component of the Northeast Coastal Ocean Forecast System (NECOFS]
plus 32-km Atlantic Oceanic WRF produced wind fields;

Wave growth function by wind: 1) Komen et al. (1984), 2) Janssen
(1989, 1991) and 3) Yan (1987);

Whitecapping function: Komen default formula;

Period:  January 1 2007 to January 30, 2007 

Time step: 1.5 minutes

32 CPU: one computational days for 10 real days





Komen growth function





Coupling of Hydrodynamics and Wave Models 
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The coupling of hydrodynamics (motions with a period longer than the 
surface waves) and waves is by the radiation stresses:

where 

Sxx, Sxy, Sxz are the x, y and z component of the radiation stress in 
the u-momentum equation;

Syx, Syy, Syz are the x, y and z component of the radiation stress in 
the v-momentum equation.

Reference: Warner et al. (2008).  



The benchmark test for the coupled hydrodynamics-wave code

Experiments made by Wu 





Bed thickness comparison


