Chapter 2

Cartesian Tensors
Chapter 2

Cartesian Tensors

1. Scalars and Vectors .. 24
2. Rotation of Axes: Formal Definition of a Vector 25
3. Multiplication of Matrices 28
4. Second-Order Tensor 29
5. Covariance and Multiplication 31
6. Force on a Surface .. 32
Example 2.1 .. 34
7. Kronecker Delta and Alternating Tensor 35
8. Dot Product .. 36
9. Cross Product ... 36
10. Operator \nabla: Gradient, Divergence, and Curl 37
11. Symmetric and Antisymmetric Tensors 38
12. Eigenvectors and Eigenvalues of a Symmetric Tensor 40
Example 2.2 .. 40
Example 2.3 .. 43
Example 2.4 .. 46
13. Gauss' Theorem ... 42
14. Stokes' Theorem ... 45
15. Common Notation ... 46
16. Boldface vs Inverted Notation 47
Exercises ... 47
17. Literature Cited .. 49
18. Supplemental Reading .. 49

1. Scalars and Vectors

In fluid mechanics we need to deal with quantities of various complexities. Some of these are defined by only one component and are called scalars, some others are defined by three components and are called vectors, and certain other variables called tensors need as many as nine components for a complete description. We shall assume that the reader is familiar with a certain amount of algebra and calculus of vectors. The concept and manipulation of tensors is the subject of this chapter.

A scalar is any quantity that is completely specified by a magnitude only, along with its unit. It is independent of the coordinate system. Examples of scalars are temperature and density of the fluid. A vector is any quantity that has a magnitude and a direction, and can be completely described by its components along three specified coordinate directions. A vector is usually denoted by a boldface symbol, for example, \(\mathbf{x} \) for position and \(\mathbf{u} \) for velocity. We can take a Cartesian coordinate system \(x_1, x_2, x_3 \), with unit vectors \(\mathbf{a}_1, \mathbf{a}_2, \) and \(\mathbf{a}_3 \) in the three mutually perpendicular directions (Figure 2.1). (In texts on vector analysis, the unit vectors are usually denoted by \(\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \hat{\mathbf{a}}_3 \).

Figure 2.1 Position vector OP and its three Cartesian components \((x_1, x_2, x_3) \). The three unit vectors are \(\mathbf{a}_1, \mathbf{a}_2, \) and \(\mathbf{a}_3 \).

by i, j, and k. We cannot use this simple notation here because we shall use \(ijk \) to denote components of a vector. Then the position vector is written as

\[
\mathbf{x} = \mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3,
\]

where \((x_1, x_2, x_3) \) are the components of \(\mathbf{x} \) along the coordinate directions. (The superscripts on the unit vectors \(\mathbf{a} \) do not denote the components of a vector; the \(\mathbf{a} \)'s are vectors themselves.) Instead of writing all three components explicitly, we can indicate the three Cartesian components of a vector by an index that takes all possible values of 1, 2, and 3. For example, the components of the position vector can be denoted by \(x_i \), where \(i \) takes all of its possible values, namely, 1, 2, and 3. To obey the laws of algebra that we shall present, the components of a vector should be written as a column. For example,

\[
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.
\]

In matrix algebra, one defines the transpose as the matrix obtained by interchanging rows and columns. For example, the transpose of a column matrix \(\mathbf{x} \) is the row matrix

\[
\mathbf{x}^T = [x_1 \ x_2 \ x_3].
\]

2. Rotation of Axes: Formal Definition of a Vector

A vector can be formally defined as any quantity whose components change similarly to the components of a position vector under the rotation of the coordinate system. Let \(x_1, x_2, x_3 \) be the original axes, and \(x_1', x_2', x_3' \) be the rotated system (Figure 2.2). The
components of the position vector \(\mathbf{x} \) in the original and rotated systems are denoted by \(x_i \) and \(x'_i \), respectively. The cosine of the angle between the old \(i \) and new \(j \) axes is represented by \(C_{ij} \). Here, the first index of the \(\mathbf{C} \) matrix refers to the old axes, and the second index of \(\mathbf{C} \) refers to the new axes. It is apparent that \(C_{ij} \neq C_{ji} \). A little geometry shows that the components in the rotated system are related to the components in the original system by

\[
 x'_i = x_i C_{ij} + x_j C_{ij} = \sum_{j=1}^{3} x_i C_{ij}.
\]

(2.1)

For simplicity, we shall verify the validity of Eq. (2.1) in two dimensions only. Referring to Figure 2.3, let \(\alpha_i \) be the angle between old \(i \) and new \(j \) axes, so that \(C_{ij} = \cos \alpha_j \). Then

\[
 x'_i = OD = OC + AB = x_1 \cos \alpha_{i1} + x_2 \sin \alpha_{i1}.
\]

(2.2)

As \(\alpha_{i1} = 90^\circ - \alpha_{21} \), we have \(\sin \alpha_{i1} = \cos \alpha_{21} = C_{21} \). Equation (2.2) then becomes

\[
 x'_i = x_1 C_{i1} + x_2 C_{21} = \sum_{j=1}^{3} x_i C_{ij}.
\]

(2.3)

In a similar manner

\[
 x'_2 = PD = PB - DB = x_2 \cos \alpha_{11} - x_1 \sin \alpha_{11}.
\]

As \(\alpha_{11} = \alpha_{22} = \alpha_{12} = 90^\circ \) (Figure 2.3), this becomes

\[
 x'_2 = x_2 \cos \alpha_{22} + x_1 \cos \alpha_{12} = \sum_{i=1}^{3} x_i C_{i2}.
\]

(2.4)

In two dimensions, Eq. (2.1) reduces to Eq. (2.3) for \(j = 1 \), and to Eq. (2.4) for \(j = 2 \). This completes our verification of Eq. (2.1).

Note that the index \(i \) appears twice in the same term on the right-hand side of Eq. (2.1), and a summation is carried out over all values of this repeated index. This type of summation over repeated indices appears frequently in tensor notation. A convention is therefore adopted that, whenever an index occurs twice in a term, a summation over the repeated index is implied, although no summation sign is explicitly written. This is frequently called the Einstein summation convention. Equation (2.1) is then simply written as

\[
 x'_i = x_i C_{ij},
\]

(2.5)

where a summation over \(i \) is understood on the right-hand side.

The free index on both sides of Eq. (2.5) is \(j \), and \(i \) is the repeated or dummy index. Obviously any letter (other than \(j \)) can be used as the dummy index without changing the meaning of this equation. For example, Eq. (2.5) can be written equivalently as

\[
 x_i C_{ij} = x_1 C_{i1} + x_2 C_{i2} = x_{11} C_{11} = \cdots,
\]

because they all mean \(x'_j = C_{1j} x_1 + C_{2j} x_2 \). Likewise, any letter can also be used for the free index, as long as the same free index is used on both sides of the equation. For example, denoting the free index by \(i \) and the summed index by \(k \), Eq. (2.5) can be written as

\[
 x'_j = x_k C_{kj}.
\]

(2.6)

This is because the set of three equations represented by Eq. (2.5) corresponding to all values of \(j \) is the same set of equations represented by Eq. (2.6) for all values of \(i \).
It is easy to show that the components of \(x \) in the old coordinate system are related to those in the rotated system by
\[
x'_i = C_{ij}x_j.
\]
(2.7)

Note that the indicial positions on the right-hand side of this relation are different from those in Eq. (2.5), because the first index of \(C \) is summed in Eq. (2.5), whereas the second index of \(C \) is summed in Eq. (2.7).

We can now formally define a Cartesian vector as any quantity that transforms like a position vector under the rotation of the coordinate system. Therefore, by analogy with Eq. (2.5), \(u \) is a vector if its components transform as
\[
u'_i = u_i C_{ij}.
\]
(2.8)

3. Multiplication of Matrices

In this chapter we shall generally follow the convention that \(3 \times 3 \) matrices are represented by uppercase letters, and column vectors are represented by lowercase letters. (An exception will be the use of lowercase \(\tau \) for the stress matrix.) Let \(A \) and \(B \) be two \(3 \times 3 \) matrices. The product of \(A \) and \(B \) is defined as the matrix \(P \) whose elements are related to those of \(A \) and \(B \) by
\[
P_{ij} = \sum_{k=1}^{3} A_{ik}B_{kj}.
\]

or, using the summation convention
\[
P_{ij} = A_{ik}B_{kj}.
\]
(2.9)

Symbolically, this is written as
\[
P = A \cdot B.
\]
(2.10)

A single dot between \(A \) and \(B \) is included in Eq. (2.10) to signify that a single index is summed on the right-hand side of Eq. (2.9). The important thing to note in Eq. (2.9) is that the elements are summed over the inner or adjacent index \(k \). It is sometimes useful to write Eq. (2.9) as
\[
P_{ij} = A_{ik}B_{kj} = (A \cdot B)_{ij},
\]

where the last term is to be read as the "\(ij \)-element of the product of matrices \(A \) and \(B \)."

In explicit form, Eq. (2.9) is written as
\[
\begin{bmatrix}
P_{11} & P_{12} & P_{13} \\
P_{21} & P_{22} & P_{23} \\
P_{31} & P_{32} & P_{33}
\end{bmatrix}
= \begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix}
\begin{bmatrix}
B_{11} & B_{12} & B_{13} \\
B_{21} & B_{22} & B_{23} \\
B_{31} & B_{32} & B_{33}
\end{bmatrix}.
\]
(2.11)

Note that Eq. (2.9) signifies that the \(ij \)-element of \(P \) is determined by multiplying the elements in the \(i \)-row of \(A \) and the \(j \)-column of \(B \), and summing. For example,
\[
P_{12} = A_{11}B_{12} + A_{12}B_{22} + A_{13}B_{32}.
\]

This is indicated by the dotted lines in Eq. (2.11). It is clear that we can define the product \(A \cdot B \) only if the number of columns of \(A \) equals the number of rows of \(B \).

Equation (2.9) can be used to determine the product of a \(3 \times 3 \) matrix and a vector, if the vector is written as a column. For example, Eq. (2.6) can be written as
\[
x'_i = C_{ij}x_j,
\]
which is now of the form of Eq. (2.9) because the summed index \(k \) is adjacent. In matrix form Eq. (2.6) can therefore be written as
\[
\begin{bmatrix}
x'_1 \\
x'_2 \\
x'_3
\end{bmatrix} = \begin{bmatrix}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}.
\]

Symbolically, the preceding is
\[x' = C^T \cdot x,
\]
whereas Eq. (2.7) is
\[x = C \cdot x'.
\]

4. Second-Order Tensor

We have seen that scalars can be represented by a single number, and a Cartesian vector can be represented by three numbers. There are other quantities, however, that need more than three components for a complete description. For example, the stress (equal to force per unit area) at a point in a material needs nine components for a complete specification because two directions (and, therefore, two free indices) are involved in its description. One direction specifies the orientation of the surface on which the stress is being sought, and the other specifies the direction of the force on that surface. For example, the \(j \)-component of the force on a surface whose outward normal points in the \(i \)-direction is denoted by \(\tau_{ij} \). (Here, we are departing from the convention followed in the rest of the chapter, namely, that tensors are represented by uppercase letters. It is customary to denote the stress tensor by the lowercase \(\tau \).) The first index of \(\tau_{ij} \) denotes the direction of the normal, and the second index denotes the direction in which the force is being projected.

This is shown in Figure 2.4, which gives the normal and shear stresses on an infinitesimal cube whose surfaces are parallel to the coordinate planes. The stresses are positive if they are directed as in this figure. The sign convention is that, on a surface whose outward normal points in the positive direction of a coordinate axis, the normal and shear stresses are positive if they point in the positive direction of the axes. For example, on the surface ABCD, whose outward normal points in the positive \(x_2 \) direction, the positive stresses \(\tau_{21} \), \(\tau_{22} \), and \(\tau_{23} \) point toward the \(x_1 \), \(x_2 \), and \(x_3 \) directions, respectively. (Clearly, the normal stresses are positive if they are tensile and negative if they are compressive.) On the opposite face EFGH the stress components have the same value as on ABCD, but their directions are reversed. This
Note the similarity between the transformation rule Eq. (2.8) for a vector, and the rule Eq. (2.12). In Eq. (2.8) the first index of \(\mathbf{C} \) is summed, while its second index is free. The rule Eq. (2.12) is identical, except that this happens twice. A quantity that obeys the transformation rule Eq. (2.12) is called a second-order tensor.

The transformation rule Eq. (2.12) can be expressed as a matrix product. Rewrite Eq. (2.12) as

\[
\tau'_{mn} = C_{mj} \tau_{ij} C_{in},
\]

which, with adjacent dummy indices, represents the matrix product

\[
\tau' = \mathbf{C}^T \cdot \tau \cdot \mathbf{C}.
\]

This says that the tensor \(\tau \) in the rotated frame is found by multiplying \(\mathbf{C} \) by \(\tau \) and then multiplying the product by \(\mathbf{C}^T \).

The concepts of tensor and matrix are not quite the same. A matrix is any arrangement of elements, written as an array. The elements of a matrix represent the components of a tensor only if they obey the transformation rule Eq. (2.12).

Tensors can be of any order. In fact, a scalar can be considered a tensor of zero order, and a vector can be regarded as a tensor of first order. The number of free indices correspond to the order of the tensor. For example, \(\mathbf{A} \) is a fourth-order tensor if it has four free indices, and the associated 81 components change under the rotation of the coordinate system according to

\[
A'_{mnpq} = C_{im} C_{jn} C_{kp} C_{lq} A_{ijkl}.
\]

Tensors of various orders arise in fluid mechanics. Some of the most frequently used are the stress tensor \(\tau_{ij} \) and the velocity gradient tensor \(\partial u_i / \partial x_j \). It can be shown that the nine products \(u_i v_j \) form the components of the two vectors \(\mathbf{u} \) and \(\mathbf{v} \) also transform according to Eq. (2.12), and therefore form a second-order tensor. In addition, certain "isotropic" tensors are also frequently used; these will be discussed in Section 7.

5. Contraction and Multiplication

When the two indices of a tensor are equated, and a summation is performed over this repeated index, the process is called contraction. An example is

\[
A_{ij} = A_{11} + A_{22} + A_{33},
\]

which is the sum of the diagonal terms. Clearly, \(A_{ij} \) is a scalar and therefore independent of the coordinate system. In other words, \(A_{ij} \) is an invariant. (There are three independent invariants of a second-order tensor, and \(A_{ij} \) is one of them; see Exercise 5.)

Higher-order tensors can be formed by multiplying lower tensors. If \(\mathbf{u} \) and \(\mathbf{v} \) are vectors, then the nine components \(u_i v_j \) form a second-order tensor. Similarly, if \(\mathbf{A} \) and \(\mathbf{B} \) are two second-order tensors, then the 81 numbers defined by \(P_{ijkl} = A_{ij} B_{kl} \) transform according to Eq. (2.13), and therefore form a fourth-order tensor.
Lower-order tensors can be obtained by performing contraction on these multiplied forms. The four contractions of $A_{ij}B_{kl}$ are

\begin{align}
A_{ij}B_{kl} &= B_{kl}A_{ij} = (B \cdot A)_{ij}, \\
A_{ij}B_{ik} &= A_{ij}B_{ik} = (A^T \cdot B)_{ik}, \\
A_{ij}B_{jk} &= A_{ij}B_{jk} = (A \cdot B^T)_{ik}, \\
A_{ij}B_{jk} &= (A \cdot B)_{ik}.
\end{align}

(2.14)

All four products in the preceding are second-order tensors. Note in Eq. (2.14) how the terms have been rearranged until the summed index is adjacent, at which point they can be written as a product of matrices.

The contracted product of a second-order tensor \mathbf{A} and a vector \mathbf{u} is a vector. The two possibilities are

\begin{align}
A_{ij}u_j &= (\mathbf{A} \cdot \mathbf{u})_i, \\
A_{ij}u_i &= A^T_{ij}u_i = (\mathbf{A}^T \cdot \mathbf{u})_j.
\end{align}

The doubly contracted product of two second-order tensors \mathbf{A} and \mathbf{B} is a scalar. The two possibilities are $A_{ij}B_{ij}$ (which can be written as $\mathbf{A} : \mathbf{B}$ in boldface notation) and $A_{ij}B_{ij}$ (which can be written as $\mathbf{A} : \mathbf{B}^T$).

6. Force on a Surface

A surface area has a magnitude and an orientation, and therefore should be treated as a vector. The orientation of the surface is conveniently specified by the direction of a unit vector normal to the surface. If dA is the magnitude of an element of surface and \mathbf{n} is the unit vector normal to the surface, then the surface area can be written as the vector

$$
dA = \mathbf{n} \, dA.
$$

Suppose the nine components of the stress tensor with respect to a given set of Cartesian coordinates are given, and we want to find the force per unit area on a surface of given orientation \mathbf{n} (Figure 2.5). One way of determining this is to take a

![Figure 2.5](image)

Figure 2.5 Force f per unit area on a surface element whose outward normal is \mathbf{n}.

Figure 2.6 (a) Stresses on surfaces of a two-dimensional element; (b) balance of forces on element ABC.

rotated coordinate system, and use Eq. (2.12) to find the normal and shear stresses on the given surface. An alternative method is described in what follows.

For simplicity, consider a two-dimensional case, for which the known stress components with respect to a coordinate system $x_1 \ x_2$ are shown in Figure 2.6a. We want to find the force on the face AC, whose outward normal \mathbf{n} is known (Figure 2.6b). Consider the balance of forces on a triangular element ABC, with sides $\mathbf{AB} = dx_2$, $\mathbf{BC} = dx_1$, and $\mathbf{AC} = ds$; the thickness of the element in the x_3 direction is unity. If \mathbf{F} is the force on the face AC, then a balance of forces in the x_1 direction gives the component of \mathbf{F} in that direction as

$$
F_1 = \tau_{11} \, dx_2 + \tau_{21} \, dx_1.
$$

Dividing by ds, and denoting the force per unit area as $f = F/ds$, we obtain

$$
f_1 = \frac{F_1}{ds} = \tau_{11} \frac{dx_2}{ds} + \tau_{21} \frac{dx_1}{ds}
= \tau_{11} \cos \theta_1 + \tau_{21} \cos \theta_2 = \tau_{11} n_1 + \tau_{21} n_2,
$$

where $n_1 = \cos \theta_1$ and $n_2 = \cos \theta_2$ because the magnitude of \mathbf{n} is unity (Figure 2.6b).

Using the summation convention, the foregoing can be written as $f_1 = \tau_{1j} n_j$, where j is summed over 1 and 2. A similar balance of forces in the x_2 direction gives $f_2 = \tau_{2j} n_j$. Generalizing to three dimensions, it is clear that

$$
f_i = \tau_{ij} n_j.
$$

Because the stress tensor is symmetric (which will be proved in the next chapter), that is, $\tau_{ij} = \tau_{ji}$, the foregoing relation can be written in boldface notation as

$$
\mathbf{f} = \mathbf{n} \cdot \tau.
$$

(2.15)
Therefore, the contracted or "inner" product of the stress tensor \(\mathbf{\tau} \) and the unit outward vector \(\mathbf{n} \) gives the force per unit area on a surface. Equation (2.15) is analogous to \(u_n = \mathbf{u} \cdot \mathbf{n} \), where \(u_n \) is the component of the vector \(\mathbf{u} \) along unit normal \(\mathbf{n} \); however, whereas \(u_n \) is a scalar, \(\mathbf{f} \) in Eq. (2.15) is a vector.

Example 2.1. Consider a two-dimensional parallel flow through a channel. Take \(x_1, x_2 \) as the coordinate system, with \(x_1 \) parallel to the flow. The viscous stress tensor at a point in the flow has the form

\[
\mathbf{\tau} = \begin{bmatrix} 0 & a \\ a & 0 \end{bmatrix},
\]

where the constant \(a \) is positive in one half of the channel, and negative in the other half. Find the magnitude and direction of force per unit area on an element whose outward normal points at \(30^\circ \) to the direction of flow.

Solution by Using Eq. (2.15): Because the magnitude of \(\mathbf{n} \) is 1 and it points at \(30^\circ \) to the \(x_1 \) axis (Figure 2.7), we have

\[
\mathbf{n} = \begin{bmatrix} \sqrt{3}/2 \\ 1/2 \end{bmatrix}.
\]

The force per unit area is therefore

\[
\mathbf{f} = \mathbf{\tau} \cdot \mathbf{n} = \begin{bmatrix} 0 & a \\ a & 0 \end{bmatrix} \begin{bmatrix} \sqrt{3}/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} a/2 \\ \sqrt{3}a/2 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix},
\]

The magnitude of \(\mathbf{f} \) is

\[
f = (f_1^2 + f_2^2)^{1/2} = |a|.
\]

If \(\theta \) is the angle of \(\mathbf{f} \) with the \(x_1 \) axis, then

\[
\sin \theta = \frac{f_2}{f} = \frac{\sqrt{3}}{2} \frac{a}{|a|} \quad \text{and} \quad \cos \theta = \frac{f_1}{f} = \frac{1}{2} \frac{a}{|a|}.
\]

Figure 2.7 Determination of force on an area element (Example 2.1).
10. Operator \(\nabla \): Gradient, Divergence, and Curl

The vector operator “del”\(^1\) is defined symbolically by

\[
\nabla = \frac{\partial}{\partial x_1} \mathbf{a}^1 + \frac{\partial}{\partial x_2} \mathbf{a}^2 + \frac{\partial}{\partial x_3} \mathbf{a}^3 = \mathbf{a} \frac{\partial}{\partial x_i},
\]

(2.22)

When operating on a scalar function of position \(\phi \), it generates the vector

\[
\nabla \phi = \mathbf{a} \frac{\partial \phi}{\partial x_i},
\]

whose \(i \)-component is

\[
(\nabla \phi)_i = \frac{\partial \phi}{\partial x_i}.
\]

The vector \(\nabla \phi \) is called the gradient of \(\phi \). It is clear that \(\nabla \phi \) is perpendicular to the \(\phi = \text{constant} \) lines and gives the magnitude and direction of the maximum spatial rate of change of \(\phi \) (Figure 2.8). The rate of change in any other direction \(\mathbf{n} \) is given by

\[
\frac{\partial \phi}{\partial n} = (\nabla \phi) \cdot \mathbf{n}.
\]

The divergence of a vector field \(\mathbf{u} \) is defined as the scalar

\[
\nabla \cdot \mathbf{u} = \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3},
\]

(2.23)

So far, we have defined the operations of the gradient of a scalar and the divergence of a vector. We can, however, generalize these operations. For example, we can define the divergence of a second-order tensor \(\mathbf{\tau} \) as the vector whose \(i \)-component is

\[
(\nabla \cdot \mathbf{\tau})_i = \frac{\partial \tau_{ij}}{\partial x_j}.
\]

(2.24)

It is evident that the divergence operation decreases the order of the tensor by one. In contrast, the gradient operation increases the order of a tensor by one, changing a zero-order tensor to a first-order tensor, and a first-order tensor to a second-order tensor.

The curl of a vector field \(\mathbf{u} \) is defined as the vector \(\nabla \times \mathbf{u} \), whose \(i \)-component can be written as (using Eqs. (2.21) and (2.22))

\[
(\nabla \times \mathbf{u})_i = \epsilon_{ijk} \frac{\partial u_k}{\partial x_j}.
\]

1The inverted Greek delta is called a “nabla” (\(\nabla = \delta \)). The origin of the word is from the Hebrew \(\nabla \) (pronounced navel), which means navel, an ancient harp-like stringed instrument. It was on this instrument that the boy, David, entertained King Saul (Samuel II) and it is mentioned repeatedly in Psalms as a musical instrument to use in the praise of God.
11. Symmetric and Antisymmetric Tensors

A tensor B is called symmetric in the indices i and j if the components do not change when i and j are interchanged, that is, if $B_{ij} = B_{ji}$. The matrix of a second-order tensor is therefore symmetric about the diagonal and made up of only six distinct components. On the other hand, a tensor is called antisymmetric if $B_{ij} = -B_{ji}$. An antisymmetric tensor must have zero diagonal terms, and the off-diagonal terms must be mirror images; it is therefore made up of only three distinct components. Any tensor can be represented as the sum of a symmetric part and an antisymmetric part. For if we write

$$B_{ij} = \frac{1}{2}(B_{ij} + B_{ji}) + \frac{1}{2}(B_{ij} - B_{ji})$$

then the operation of interchanging i and j does not change the first term, but changes the sign of the second term. Therefore, $(B_{ij} + B_{ji})/2$ is called the symmetric part of B_{ij}, and $(B_{ij} - B_{ji})/2$ is called the antisymmetric part of B_{ij}.

Every vector can be associated with an antisymmetric tensor, and vice versa. For example, we can associate the vector

$$\omega = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix},$$

with an antisymmetric tensor defined by

$$R = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix},$$

where the two are related as

$$R_{ij} = -\epsilon_{ijk}\omega_k, \quad \omega_k = -\frac{1}{2}\epsilon_{ijk}R_{ij}.$$ \hspace{1cm} (2.26)

As a check, Eq. (2.27) gives $R_{11} = 0$ and $R_{12} = -\epsilon_{123}\omega_3 = -\omega_3$, which is in agreement with Eq. (2.26). In Chapter 3 we shall call R the “rotation” tensor corresponding to the “vorticity” vector ω.

A very frequently occurring operation is the doubly contracted product of a symmetric tensor τ and any tensor B. The doubly contracted product is defined as

$$P = \tau_{ij}B_{ij} = \tau_{ij}(S_{ij} + A_{ij}),$$

where S and A are the symmetric and antisymmetric parts of B, given by

$$S_{ij} = \frac{1}{2}(B_{ij} + B_{ji}) \quad \text{and} \quad A_{ij} = \frac{1}{2}(B_{ij} - B_{ji}).$$

Then

$$P = \tau_{ij}S_{ij} + \tau_{ij}A_{ij} = \tau_{ij}S_{ij} \quad \text{because} \quad S_{ij} = S_{ji} \quad \text{and} \quad A_{ij} = -A_{ji},$$

$$= \tau_{ij}S_{ij} - \tau_{ji}A_{ij} \quad \text{because} \quad \tau_{ij} = \tau_{ji},$$

$$= \tau_{ij}S_{ij} - \tau_{ij}A_{ij} \quad \text{interchanging dummy indices}. \hspace{1cm} (2.28)$$

Comparing the two forms of Eqs. (2.28) and (2.29), we see that $\tau_{ij}A_{ij} = 0$, so that

$$\tau_{ij}B_{ij} = \frac{1}{2}\tau_{ij}(B_{ij} + B_{ji}).$$

The important result we have proved is that the doubly contracted product of a symmetric tensor τ with any tensor B equals τ times the symmetric part of B. In the process, we have also shown that the doubly contracted product of a symmetric tensor and an antisymmetric tensor is zero. This is analogous to the result that the definite integral over an even (symmetric) interval of the product of a symmetric and an antisymmetric function is zero.
12. Eigenvalues and Eigenvectors of a Symmetric Tensor

The reader is assumed to be familiar with the concepts of eigenvalues and eigenvectors of a matrix, and only a brief review of the main results is given here. Suppose τ is a symmetric tensor with real elements, for example, the stress tensor. Then the following facts can be proved:

(1) There are three real eigenvalues λ^k ($k = 1, 2, 3$), which may or may not be all distinct. (The superscript λ^k does not denote the k-component of a vector.) The eigenvalues satisfy the third-degree equation

$$\det (\tau_{ij} - \lambda \delta_{ij}) = 0,$$

which can be solved for λ^1, λ^2, and λ^3.

(2) The three eigenvectors b^k corresponding to distinct eigenvalues λ^k are mutually orthogonal. These are frequently called the principal axes of τ. Each b^k is found by solving a set of three equations

$$(\tau_{ij} - \lambda \delta_{ij}) b_j^k = 0,$$

where the superscript k on λ and b has been omitted.

(3) If the coordinate system is rotated so as to coincide with the eigenvectors, then τ has a diagonal form with elements λ^k. That is,

$$\tau' = \begin{bmatrix} \lambda^1 & 0 & 0 \\ 0 & \lambda^2 & 0 \\ 0 & 0 & \lambda^3 \end{bmatrix}$$

in the coordinate system of the eigenvectors.

(4) The elements τ_{ij} change as the coordinate system is rotated, but they cannot be larger than the largest λ or smaller than the smallest λ. That is, the eigenvalues are the extremum values of τ_{ij}.

Example 2.2. The strain rate tensor E is related to the velocity vector u by

$$E_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right).$$

For a two-dimensional parallel flow

$$u = \begin{bmatrix} u_1(x_2) \\ 0 \end{bmatrix},$$

show how E is diagonalized in the frame of reference coinciding with the principal axes.

Solution: For the given velocity profile $u_1(x_2)$, it is evident that $E_{11} = E_{22} = 0$, and $E_{12} = E_{21} = \frac{1}{2} (du_1/dx_2) = \Gamma$. The strain rate tensor in the unrotated coordinate system is therefore

$$E = \begin{bmatrix} 0 & \Gamma \\ \Gamma & 0 \end{bmatrix}.$$

The eigenvalues are given by

$$\det (E_{ij} - \lambda \delta_{ij}) = \begin{vmatrix} -\lambda & \Gamma \\ \Gamma & -\lambda \end{vmatrix} = 0,$$

whose solutions are $\lambda^1 = \Gamma$ and $\lambda^2 = -\Gamma$. The first eigenvector b^1 is given by

$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} b_1^1 \\ b_2^1 \\ b_3^1 \end{bmatrix} = \lambda^1 \begin{bmatrix} b_1^1 \\ b_2^1 \\ b_3^1 \end{bmatrix},$$

whose solution is $b_1^1 = 1/\sqrt{2}$, thus normalizing the magnitude to unity. The first eigenvector is therefore $b^1 = [1/\sqrt{2}, 1/\sqrt{2}, 0]$, writing it in a row. The second eigenvector is similarly found as $b^2 = [-1/\sqrt{2}, 1/\sqrt{2}, 0]$. The eigenvectors are shown in Figure 2.9. The direction cosine matrix of the original and the rotated coordinate system is therefore

$$C = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix},$$

which represents rotation of the coordinate system by 45°. Using the transformation rule (2.12), the components of E in the rotated system are found as follows:

$$E'_{12} = C_{11}C_{22}E_{11} = C_{11}C_{22}E_{22} + C_{21}C_{12}E_{21} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \Gamma - \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \Gamma = 0.$$
The most common form of Gauss' theorem is when \(\mathbf{Q} \) is a vector, in which case the theorem is

\[
\int_V \frac{\partial \mathbf{Q}_j}{\partial x_i} \, dV = \int_A \mathbf{A}_i \cdot \mathbf{Q} \, dA.
\]

which is called the **divergence theorem**. In vector notation, the divergence theorem is

\[
\int_V \nabla \cdot \mathbf{Q} \, dV = \int_A \mathbf{A} \cdot \mathbf{Q} \, dA.
\]

Physically, it states that the volume integral of the divergence of \(\mathbf{Q} \) is equal to the surface integral of the outflow of \(\mathbf{Q} \). Alternatively, Eq. (2.30), when considered in its limiting form for an infinitesimal volume, can define a generalized field derivative of \(\mathbf{Q} \) by the expression

\[
\mathcal{D} \mathbf{Q} = \lim_{V \to 0} \frac{1}{V} \int_A \mathbf{A}_i \cdot \mathbf{Q} \, dA.
\]

(2.31)

This includes the gradient, divergence, and curl of any scalar, vector, or tensor \(\mathbf{Q} \). Moreover, by regarding Eq. (2.31) as a definition, the recipe for the computation of the vector field derivatives may be obtained in any coordinate system. For a tensor \(\mathbf{Q} \) of any order, Eq. (2.31) as written defines the gradient. For a tensor of order one (vector) or higher, the divergence is defined by using a dot (scalar) product under the integral

\[
\text{div} \mathbf{Q} = \lim_{V \to 0} \frac{1}{V} \int_A \mathbf{A} \cdot \mathbf{Q} \, dA.
\]

(2.32)

and the curl is defined by using a cross (vector) product under the integral

\[
\text{curl} \mathbf{Q} = \lim_{V \to 0} \frac{1}{V} \int_A \mathbf{A} \times \mathbf{Q} \, dA.
\]

(2.33)

In Eqs. (2.31), (2.32), and (2.33), \(A \) is the closed surface bounding the volume \(V \).

Example 2.3. Obtain the recipe for the divergence of a vector \(\mathbf{Q}(x) \) in cylindrical polar coordinates from the integral definition equation (2.32). Compare with Appendix B.1.

Solution: Consider an elemental volume bounded by the surfaces \(R - \Delta R/2 \), \(R + \Delta R/2 \), \(\theta - \Delta \theta/2 \), \(\theta + \Delta \theta/2 \), \(x - \Delta x/2 \), and \(x + \Delta x/2 \). The volume enclosed \(\Delta V \) is \(R \Delta \theta \Delta R \Delta x \). We wish to calculate \(\text{div} \mathbf{Q} = \lim_{\Delta V \to 0} \frac{1}{V} \int_A \mathbf{A} \cdot \mathbf{Q} \) at the central point \(R, \theta, x \) by integrating the net outward flux through the bounding surface \(A \) of \(\Delta V \):

\[
\mathbf{Q} = i_\theta \mathbf{Q}_R(R, \theta, x) + i_\theta \mathbf{Q}_\theta(R, \theta, x) + i_\theta \mathbf{Q}_x(R, \theta, x).
\]

In evaluating the surface integrals, we can show that in the limit taken, each of the six surface integrals may be approximated by the product of the value at the center of the surface and the surface area. This is shown by Taylor expanding each of the scalar products in the two variables of each surface, carrying out the integrations, and
applying the limits. The result is

\[
\text{div } \mathbf{Q} = \lim_{\Delta \theta \to 0} \left\{ \frac{1}{\Delta \theta \Delta x} \left[Q_R \left(R + \frac{\Delta R}{2}, \theta, x \right) \left(R + \frac{\Delta R}{2} \right) \Delta \theta \Delta x \right.
ight.
\]

\[- Q_R \left(R - \frac{\Delta R}{2}, \theta, x \right) \left(R - \frac{\Delta R}{2} \right) \Delta \theta \Delta x
\]

\[+ Q_x \left(R, \theta, x + \frac{\Delta x}{2} \right) R \Delta \theta \Delta x - Q_x \left(R, \theta, x - \frac{\Delta x}{2} \right) R \Delta \theta \Delta x
\]

\[+ Q_x \left(R, \theta + \frac{\Delta \theta}{2}, x \right) \left(-i_0 - i_{\theta} \frac{\Delta \theta}{2} \right) \Delta \theta \Delta x
\]

\[- \left\llbracket Q_x \right\rrbracket \left(R, \theta - \frac{\Delta \theta}{2}, x \right) \left(-i_0 - i_{\theta} \frac{\Delta \theta}{2} \right) \Delta \theta \Delta x \right\}.
\]

where an additional complication arises because the normals to the two planes \(\theta \pm \Delta \theta/2 \) are not antiparallel:

\[
Q \left(R, \theta \pm \frac{\Delta \theta}{2}, x \right) = Q_R \left(R, \theta \pm \frac{\Delta \theta}{2}, x \right) i_0 \left(R, \theta \pm \frac{\Delta \theta}{2}, x \right)
\]

\[+ Q_x \left(R, \theta \pm \frac{\Delta \theta}{2}, x \right) i_0 \left(R, \theta \pm \frac{\Delta \theta}{2}, x \right)
\]

\[+ Q_x \left(R, \theta \pm \frac{\Delta \theta}{2}, x \right) i_0 \left(R, \theta \pm \frac{\Delta \theta}{2}, x \right).
\]

Now we can show that

\[i_0 \left(\theta \pm \frac{\Delta \theta}{2} \right) = i_0 (\theta) = \frac{\Delta \theta}{2} i_{\theta} (\theta), \quad i_0 \left(\theta \pm \frac{\Delta \theta}{2} \right) = i_0 (\theta) = \frac{\Delta \theta}{2} i_{\theta} (\theta).
\]

Evaluating the last pair of surface integrals explicitly,

\[
\text{div } \mathbf{Q} = \lim_{\Delta \theta \to 0} \left\{ \frac{1}{\Delta \theta \Delta x} \left[Q_R \left(R + \frac{\Delta R}{2}, \theta, x \right) \left(R + \frac{\Delta R}{2} \right) \Delta \theta \Delta x \right.
ight.
\]

\[- Q_R \left(R - \frac{\Delta R}{2}, \theta, x \right) \left(R - \frac{\Delta R}{2} \right) \Delta \theta \Delta x
\]

\[+ \left(Q_x \left(R, \theta, x + \frac{\Delta x}{2} \right) - Q_x \left(R, \theta, x - \frac{\Delta x}{2} \right) \right) R \Delta \theta \Delta x
\]

\[+ Q_x \left(R, \theta + \frac{\Delta \theta}{2}, x \right) \frac{\Delta \theta}{2} - Q_x \left(R, \theta + \frac{\Delta \theta}{2}, x \right) \Delta \theta \Delta x
\]

\[+ Q_x \left(R, \theta - \frac{\Delta \theta}{2}, x \right) \frac{\Delta \theta}{2} - Q_x \left(R, \theta - \frac{\Delta \theta}{2}, x \right) \Delta \theta \Delta x
\]

\[- \left\llbracket Q_x \right\rrbracket \left(R, \theta - \frac{\Delta \theta}{2}, x \right) \frac{\Delta \theta}{2} - Q_x \left(R, \theta - \frac{\Delta \theta}{2}, x \right) \Delta \theta \Delta x \right\}.
\]

where terms of second order in the increments have been neglected as they will vanish in the limits. Carrying out the limits, we obtain

\[
\text{div } \mathbf{Q} = \frac{1}{R} \frac{\partial}{\partial R} \left(R Q_R \right) + \frac{1}{R} \frac{\partial}{\partial \theta} Q_\theta + \frac{\partial}{\partial x} Q_x.
\]

Here, the physical interpretation of the divergence is as the net outward flux of a vector field per unit volume has been made apparent by its evaluation through the integral definition.

This level of detail is required to obtain the gradient correctly in these coordinates.

14. Stokes' Theorem

Stokes' theorem relates a surface integral over an open surface to a line integral around the boundary curve. Consider an open surface \(A \) whose bounding curve is \(C \) (Figure 2.11). Choose one side of the surface to be the outside. Let \(ds \) be an element of the bounding curve whose magnitude is the length of the element and whose direction is that of the tangent. The positive sense of the tangent is such that, when seen from the "outside" of the surface in the direction of the tangent, the interior is on the left.

Then the theorem states that

\[
\int_A (\nabla \times \mathbf{u}) \cdot d\mathbf{A} = \int_C \mathbf{u} \cdot ds,
\]

which signifies that the surface integral of the curl of a vector field \(\mathbf{u} \) is equal to the line integral of \(\mathbf{u} \) along the bounding curve.

The line integral of a vector \(\mathbf{u} \) around a closed curve \(C \) (as in Figure 2.11) is called the "circulation of \(\mathbf{u} \) about \(C \)." This can be used to define the curl of a vector through

![Figure 2.11 Illustration of Stokes' theorem.](image-url)
the limit of the circulation integral bounding an infinitesimal surface as follows:

\[
\mathbf{n} \cdot \text{curl} \mathbf{u} = \lim_{A \to 0} \frac{1}{A} \int_{C} \mathbf{u} \cdot d\mathbf{s},
\]

(2.35)

where \(\mathbf{n} \) is a unit vector normal to the local tangent plane of \(A \). The advantage of the integral definitions of the field derivatives is that they may be applied regardless of the coordinate system.

Example 2.4. Obtain the recipe for the curl of a vector \(\mathbf{u}(x) \) in Cartesian coordinates from the integral definition given by Eq. (2.35).

Solution: This is obtained by considering rectangular contours in three perpendicular planes intersecting at the point \((x, y, z)\). First, consider the elemental rectangle in the \(x = \text{const.} \) plane. The central point in this plane has coordinates \((x, y, z)\) and the area is \(\Delta y \Delta z \). It may be shown by careful integration of a Taylor expansion of the integrand that the integral along each line segment may be represented by the product of the integrand at the center of the segment and the length of the segment with attention paid to the direction of integration \(ds \). Thus we obtain

\[
\text{curl} \mathbf{u} = \frac{1}{\Delta y \Delta z} \left[u_z \left(x, y + \frac{\Delta y}{2}, z \right) - u_z \left(x, y - \frac{\Delta y}{2}, z \right) \right] \Delta z
+ \frac{1}{\Delta y \Delta z} \left[u_y \left(x, y, z + \frac{\Delta z}{2} \right) - u_y \left(x, y, z - \frac{\Delta z}{2} \right) \right] \Delta y.
\]

Taking the limits,

\[
\text{curl} \mathbf{u} = \frac{\partial u_z}{\partial y} - \frac{\partial u_y}{\partial z}.
\]

Similarly, integrating around the elemental rectangles in the other two planes

\[
\begin{align*}
\text{curl} \mathbf{u} &= \frac{\partial u_x}{\partial y} - \frac{\partial u_x}{\partial z}, \\
\text{curl} \mathbf{u} &= \frac{\partial u_x}{\partial y} - \frac{\partial u_y}{\partial x}.
\end{align*}
\]

15. Comma Notation

Sometimes it is convenient to introduce the notation

\[
A_{ij} = \frac{\partial A}{\partial x_i},
\]

(2.36)

where \(A \) is a tensor of any order. In this notation, therefore, the comma denotes a spatial derivative. For example, the divergence and curl of a vector \(\mathbf{u} \) can be written, respectively, as

\[
\nabla \cdot \mathbf{u} = \frac{\partial u_i}{\partial x_i} = u_{i,i},
\]

\[
(\nabla \times \mathbf{u})_k = \varepsilon_{ijk} \frac{\partial u_j}{\partial x_j} = \varepsilon_{ijk} u_{k,j}.
\]

This notation has the advantages of economy and that all subscripts are written on one line. Another advantage is that variables such as \(u_{ij} \) "look like" tensors, which they are, in fact. Its disadvantage is that it takes a while to get used to it, and that the comma has to be written clearly in order to avoid confusion with other indices in a term. The comma notation has been used in the book only in two sections, in instances where otherwise the algebra became cumbersome.

**16. **Boldface vs Indicial Notation

The reader will have noticed that we have been using both boldface and indicial notations. Sometimes the boldface notation is loosely called "vector" or "dyadic" notation, while the indicial notation is called "tensor" notation. (Although there is no reason why vectors cannot be written in indicial notation). The advantage of the boldface form is that the physical meaning of the terms is generally clearer, and there are no cumbersome subscripts. Its disadvantages are that algebraic manipulations are difficult, the ordering of terms becomes important because \(\mathbf{A} \cdot \mathbf{B} \) is not the same as \(\mathbf{B} \cdot \mathbf{A} \), and one has to remember formulas for triple products such as \(\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) \) and \(\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \). In addition, there are other problems, for example, the order of rank of a tensor is not clear if one simply calls it \(\mathbf{A} \), and sometimes confusion may arise in products such as \(\mathbf{A} \cdot \mathbf{B} \) where it is not immediately clear which index is summed. To add to the confusion, the singly contracted product \(\mathbf{A} \cdot \mathbf{B} \) is frequently written as \(\mathbf{AB} \) in books on matrix algebra, whereas in several other fields \(\mathbf{AB} \) usually stands for the uncontracted fourth-order tensor with elements \(A_{ij} B_{jk} \).

The indicial notation avoids all the problems mentioned in the preceding. The algebraic manipulations are especially simple. The ordering of terms is unnecessary because \(A_{ij} B_{jk} \) means the same thing as \(B_{ij} A_{jk} \). In this notation we deal with components only, which are scalars. Another major advantage is that one does not have to remember formulas except for the product \(\varepsilon_{ijk} \varepsilon_{klm} \), which is given by Eq. (2.19). The disadvantage of the indicial notation is that the physical meaning of a term becomes clear only after an examination of the indices. A second disadvantage is that the cross product involves the introduction of the cumbersome \(\varepsilon_{ijk} \). This, however, can frequently be avoided by writing the \(i \)-component of the vector product of \(\mathbf{u} \) and \(\mathbf{v} \) as \((\mathbf{u} \times \mathbf{v})_i \), using a mixture of boldface and indicial notations. In this book we shall use boldface, indicial and mixed notations in order to take advantage of each. As the reader might have guessed, the algebraic manipulations will be performed mostly in the indicial notation, sometimes using the comma notation.

Exercises

1. Using indicial notation, show that

\[
\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}.
\]

[HINT: Call \(d \equiv \mathbf{b} \times \mathbf{c} \). Then \((\mathbf{a} \times \mathbf{d})_m = \varepsilon_{pqm} a_p d_q = \varepsilon_{pqm} a_p \varepsilon_{ijq} b_i c_j \). Using Eq. (2.19), show that \((\mathbf{a} \times \mathbf{d})_m = (\mathbf{a} \cdot \mathbf{c}) b_m - (\mathbf{a} \cdot \mathbf{b}) c_m \).]

2. Show that the condition for the vectors \(\mathbf{a}, \mathbf{b}, \) and \(\mathbf{c} \) to be coplanar is

\[
\varepsilon_{ijk} a_i b_j c_k = 0.
\]
3. Prove the following relationships:
\[
\delta_{ij}\delta_{ij} = 3 \\
\varepsilon_{pqr}\varepsilon_{pqr} = 6 \\
\varepsilon_{pqr}\varepsilon_{spq} = 2\delta_{ij}.
\]

4. Show that
\[
C \cdot C^T = C^T \cdot C = \delta.
\]
where \(C \) is the direction cosine matrix and \(\delta \) is the matrix of the Kronecker delta. Any matrix obeying such a relationship is called an orthogonality matrix because it represents transformation of one set of orthogonal axes into another.

5. Show that for a second-order tensor \(A \), the following three quantities are invariant under the rotation of axes:
\[
I_1 = A_{ii} \\
I_2 = \begin{vmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix} + \begin{vmatrix} A_{22} & A_{23} \\ A_{32} & A_{33} \end{vmatrix} + \begin{vmatrix} A_{31} & A_{33} \\ A_{31} & A_{33} \end{vmatrix} \\
I_3 = \det(A_{ij}).
\]

[Hint: Use the result of Exercise 4 and the transformation rule (2.12) to show that \(I_1' = A_{ij}' = A_{ii} = I_1 \). Then show that \(A_{ij}A_{ij} \) and \(A_{ij}A_{jk}A_{kl} \) are also invariants. In fact, all contracted scalars of the form \(A_{ij}A_{jk} \cdots A_{ni} \) are invariants. Finally, verify that
\[
I_2 = \frac{1}{2} [I_1^2 - A_{ij}A_{ij}] \\
I_3 = A_{ij}A_{jk}A_{kl} - I_1A_{ij}A_{ij} + I_2A_{ij}.
\]
Because the right-hand sides are invariant, so are \(I_2 \) and \(I_3 \).]

6. If \(u \) and \(v \) are vectors, show that the products \(u \cdot v \) obey the transformation rule (2.12), and therefore represent a second-order tensor.

7. Show that \(\delta_{ij} \) is an isotropic tensor. That is, show that \(\delta_{ij} = \delta_{ji} \) under rotation of the coordinate system. [Hint: Use the transformation rule (2.12) and the results of Exercise 4.]

8. Obtain the recipe for the divergence of a scalar function in cylindrical polar coordinates from the integral definition.

9. Obtain the recipe for the divergence of a vector in spherical polar coordinates from the integral definition.

10. Prove that \(\text{div} \text{(curl} u) = 0 \) for any vector \(u \) regardless of the coordinate system. [Hint: use the vector integral theorems.]

11. Prove that \(\text{curl} \text{(grad} \phi) = 0 \) for any single-valued scalar \(\phi \) regardless of the coordinate system. [Hint: use Stokes' theorem.]

Supplemental Reading

Supplemental Reading
