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APPENDIX A: Physics Review

“The heart of physicsis an understanding of the quantitative relationships between the
position and motion of mass and the forces causing changes in that motion.”

The following isabrief refresher describing the tools we will usein developing these

quantitative relationships for ocean currents and wastes. This presentation is not meant

to be complete so if some of the ideas are unfamiliar you are referred to sandard
physcs texts for clarification and eaboration.

Units
The fundamenta quantities of distance, time and mass (usudly the meter, second and

kilogram respectively) are defined in terms of standards which are maintained and
preserved in the Internationa Bureau of Standards. Severd systems including the mks
and cgs have been devised for finding multiples and submultiples of the sandard units.

The unitsfor other derived quantities such as force, torque, density, etc. are determined
unambiguoudy from these fundamenta quantities.

Tools
Scalars: Quantities which have a magnitude only;

For example, temperature and pressure.
Vectors. Quantities that have both magnitude and direction;

For example, the vector displacement of a particle isdescribed by its scaar
digance and direction

Equivadent vectors have equa magnitudes and the same directions;

Vectors aandbin Figure A1 are equivaent vectors with equal
magnitudes| a|and| b| and the same directions.
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Figure Al. Equivalent Vectors

Vector Operations include vector addition, subtraction and multiplication.

Two examples of vector addition (see Figure A2).
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Figure A2. Vector addition

An example of vector subtraction (see Figure A3).

a-b=a+(-b)=¢
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Figure A3. Vector subtraction
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Defining a coordinate system, like the 2-dimentiond x-y sysemin Figure A4, enables

vectora to be resolved into its scalar components aong the x and y axes according to:

a,=|alcosq
ay=lalsnq
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Figure A4. Theresolution of vector & into its scalar components.

To reconstruct vector @ |, first define unit vectors i and j (inthex andy directions

respectively; each with magnitudes of 1), second multiply the unit vectors by the
appropriate component magnitudes a, and &, repectively, and third do the vector

addition a=a, 1 +a, ] asshownin Figure A4:

Vector Multiplication

There are two kinds of vector multiplication; namdly scalar multiplication and the

vector multiplication of two vectors.

The scalar product of two vectorsis

a-b=¢=|a|cosq|b|=|al b|cosq
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The graphical presentation of the above operation in Figure A5 shows that a scaar
product a- b iseither the (a) component of & aongb times| Bl or the (b) component

of bdong a times| a.

Figure A5. The components of ascalar product of 2 vectors.

-

Notethat if b =1 , thenthe scalar product operation

a- T = ax
produces the vector component in that direction; i.e., vector resolution.
A wdl-known example of ascaar product isthe particle kinetic energy

K.E.=1/2m(V- V)=1/2m(v{ + Vi + V7).

The vector product of two vectorsis defined as

where ﬁ is the unit vector that is perpendicular to plane of aandb. The so-caled
c

right hand rule (for an advancing screw) determines the sense of ¢ asillugrated in

ax b

=C
or
bxa=-¢
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A well-known example of avector product isthe torque, T about at point
T=TxF ,
where F istheforce acting at r isthe radius vector from the point.
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Figure A6. The depiction of vector torque

Other Tools
Consider f(x) —an explidt functionof x. The differentia of f(x) isj—f . 1f x = x(t), then
X

f(x) isan implidit function of t and the differentid %can be computed using the chain

rule according to

of _di &
d  dx dt

For example, if f(x) =X and x = %, then% =2X- 2t=4+°.

Congder f(x, Y, 2) - an explicit function of variables x, y and z. Thetota differentid of
f(x,y,2) is

df :ﬂ_f}/é dx+ﬂ_f11/§ dy+ﬂ_f}/§ dz
Xz, e, 124,

Whereﬂ : il and ki are patid differentids with respect to one of the independent

ix Ty 1z
variable computed while the other variables are held constant.
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Combining the caculus and vector consderations from above, we define a gradient
vector. Spedficdly, if f =f (X, Y, z) isascadar, thenitsgradient ois

f

Nf =Nf :ﬂf+ﬂ]+ﬂ—ﬁ ,
ix Ty 1z
WherethedeloperatorN0i7+i]+lk.
Ix Ty 1z

M echanics of a Particle
Thefidd of mechanicsisdivided into kinematics and dynamics.

Kinematics dedl's with the description of the relation of postion, velocity and
acceleration.

Dynamics deds with the rdation of the motion with the forces causing it.

Particle Kinematics

Congder the kinematics of a partide sarting at podtion a at timet = t; and following
the curved path shownin Figure A7. The disdlacement for the particle between timest;

and t, isthe vector X .

Figure A7. Particletrajectory and displacement
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The average particle velocity is

o =X
Va Dt ,
where Dt=t, - t;.
The ingtantaneous partice veocity is
_ . Dx dx
Vi) =lim—=-=— ,

where DX isa “smdl displacement” which occurs over a“smdl time’ intervd, Dt . The
magnitude of the velodity isthe speed

which isascaar quantity.
Smilarly, the ingantaneous particle accelerationiis

- . Dv_dv _d*x
a(t) = - = ==
||3It':@T()] Dt dt dt?
Examples. Congider two cases of constant magnitude acceeration.
1) Rectilinear Motion

Congder one-dimendgond motionwith a congtant initid acceleration (see Figure A8);
Thus

where a, isa at=0and dueto achange in magnitude of the velocity.
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Now find \ﬁ from

wherev=y  a t=0.

Now find @ from

5 *+ Vol +Xo
whereX=x, a t=0.
a a
t
V //Ar‘
V° &
2
X
' \A Ve
t\

Figure A8. Particle kinematics relating instantaneous displacement
velocity and acceleration.
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2) Circular Motion (uniform)

Figure A9. Uniform circular motion of a particle.

The magnitude for the accelerationis

‘o
T
I

— <
=!| -
<
~ <

while the direction of the accderation is.l_TrI )
r

Here the acceleration is due and direction change of a constant magnitude velocity.

Elements of Dynamicsof a Particle
In this course the basis for the dynamics we consider will be Newton's First and

Second Laws of Mation.

Newton's First Law describes undisturbed rest or motion and states in effect that:

“If left undisturbed, a body will tend to stay at rest if originally at rest or if
originally moving it will continue at a constant velocity.”

Newton’s Second Law describes the way a body changesits motion if it is disturbed
and States that:
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“ The time rate of change of a quantity called momentum is proportional to

the applied resultant force” .

Symbolicdly  Newton’s Second Law is given by

= _ dmv)
ot

where Fisthe resultant of forces applied to amass m with momentum= mv ; in which
Vv isitsvelocity. (Note that here massis the quantitative measure of inertia. For

example, while the weight of a particular object would be greater on Earth than on
Mars, the same force would be required to accelerate that mass on both planets).

Usudly m = congtant and since acceleration a = % thefamiliar form of Newton's

Second Law can be written

This vector form of Newton's Second Law can be reduced to its three scalar
component equations

F = may
F = may
F.=ma;

each of which must be satisfied independently for dl time.

Now let’s explore the solution of following classical physica problem
Given Africtionlessblock isatresta x =0at t =0 onanindined plane (Figure A10).
(Note: the choice of coordinate system smplifies the problem). Describe its subsequent

© 2004 Wendell S. Brown 19 October 2004



Appendices - pg. 11

position as afunction of time. To solve the problem:

Figure A10. A frictionless block sliding on a sloping surface of anglea .

First, congtruct afree-body diagram for the problem (see Figure A11), inwhich mg is

the body weight and N isthe normal force applied by the inclined plane to the block.

3

N

o |

iy,

mq %
Figure Al1l. A “freebody” diagram of the frictionless block sliding down aninclined plane.
Second, apply Newton's 2™ Law in the 2 coordinate directions.
In the x-direction
Fx =mgdna = ma,
or
a =gdgna :

which givesthe constant acceleration of the block down the indined plane;

In the y-direction, the block does not move (or accelerate), thus

Fy,=ma,=N-mgcosa =0
or

N = mg cosa
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Oncetheresultsof Figure A8 are gpplied with a, - a; the problem is solved.

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

DOING PHYSICSPROBLEMS

Dimensions and Dimensional Arguments

kkhkhkkkhhkkkhhhkkhhhkkhhhkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhdhhkhkhhkhkhhkkkkkx%x%x

When doing any physics problem aways keep in mind the dimensiond naiure of
physica data and check accordingly.

Severd Rules

1 Do not add quantities with different units;

(e.g. cm and m/sec or even (cardlesdy) cm and m).

2. Y ou can not take the sne of 10 cm
All mathematica functions must have dimensonless arguments.

3. The dimensions of a quantity that is a product of two dimensond quantitiesare
the product of the dimensions.

4, If your “formula® does not give answers with the proper dimensions, then itis
nat right. (For example, given an object traveling a speed C cm/sec for T days,
the distance it travel's can not be C/T, which has dimensions lengthvtime?, but
must be C-T with the additiona days to seconds conversion factor.)

Guiddlines

1. Check formulaefirg usng "abgract” dimensions length, time, mass, €ic.;

L = C T
Length =  lengthtime time = length
Correct!

2. Check to seeif aunits conversion factor (e.g. 60 sec/min) is needed.
Frequently these ideas can give afirst gpproximation to an answer with very little work.

For example, suppose we wish to know the period T of a pendulum with alengthL =
10 cm and amass m= 100 gm in a gravitationd fied in which g = 980 cn/sec?.
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S~ -~

The avallable physica quantities and their units are:
[L] = length; [g] =lengthvtime? [m] = mass
[0, - initid angle] = radians; [T] =time
The only way we can congtruct the period T with units of timeis
T = Q(L/g) 7(qo) ,
where f is some unknown mathematical function [herés where physcsis necessary].
Essentidly for free we have learned that T does not depend on m and must be

proportional to QL. If f isabout 1, then T is about G10/980 sec or about 0.1sec. In fact,
f~2p.
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APPENDIX A PROBLEMS

1. Long-term current meter measurements located on the continenta shelf south of Nova
Scotia show that average near-surface currents are westward at 20 cn/s.

a) Cdculate the dongshore (pardld to shore) and cross-shore (perpendicular to
shore) components of this current taking into account the fact that the Nova
Scotia coadtline is oriented dong a 65 degrees True compass heading. Make sure
to define and sketch your coordinate systems and velocities. Show al work.

b) A Canadian Coast Guard search and rescue team is searching for afishing vessdl
which went down 100 km off the coast of Nova Scotia in the same area
described above. Based on the average current velocity in the region how far
aong the coagt and perpendicular to the coast should the search team look for
survivors 24 hours after the vessdl has sunk? Show al work.

2. A velocity fiedld may be defined as follows:

u(x,y,z) =5t% + 3x + 2y
v(X,y,zt) =0
w(Xx,y,zt) =0

a) Compute an expression for the total derivative of the above velocity field.
Show al work.

b) Compute the total derivative of the velocity field at t=2, x=3, and y= 3. Show
al work.

c) What isthe ratio of the“loca” acceleration to the “advective’ acceerations?

3. A typicd changein the sea surface height across the Gulf Stream is gpproximeately 1 m.
Given that the Gulf Stream is gpproximately 100 km in width, whet is atypica sea surface
dope (in degrees please!) across the Gulf Stream. Draw a diagram as part of your
answer and show al work.
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APPENDI X B: Derivation of the Coriolis Force

Consider avector A , which changes with time at arate C:j—?| asviewed by an

rot

observer in the Earth' s rotating (accd erating) frame of reference. However, even if

Ly

dt rot
inertid frame of reference in outer space becauseit is fixed to arotating Earth. Figure

° 0, then the vector A will be seen to change direction by an observer in an

B1 showsavector A (whichistilted at anangley relative to the Earth' s rotation

vector W) a time t and timet + dt. Asthe Earth rotates through the angle a

Constant
\Veckor
fixed
<o ro&'ahf\c\

Eackn

FigureB1 Vector displacement on arotating earth. The meridional plane of A is translated through
anangleaintimedt

the component of A pardld (11) to the axis of rotation W is unchanged in magnitude

and direction. However, the component of A perpendicular (~ ) toW, A« inFigure B2,
changes direction as shown.
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Equa%ﬂ@l /P\an view
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FigureB2. The changein direction of the vector A , due to earth rotation through angle a intime
dt.

The differentia changeinA tis
dA =|A¢|W|dtA
where [A¢|=| A |dny (seeabove), |W|dt isthe angle of rotationa; i isthe unit

vector perpendicular to AG

Therefore
dA¢=|A |dny |W|dt A
or
dA¢=Wx A.
Thus the generd resuilt for the time rate of change for any vector A is

I é d - -
hadhl Wx A + (== —) +WXxX A
( dt )flxed ( dt )rot édt

Applying the above rule (i.e. operator) twice to the position vector T of a particle (or
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water parcel) givesthe following for the particle acceleration intheinertid or fixed frame
of reference:

2=
dr _) +Wx;e(dr) +erL<|

(?)ﬂxaj Sdt rot e dt rot

( ) +2Wx(_) +Wx Wx T.

rot rot

Since Newton's 2™ Law for the motion of a particle of massm in aninertid is

m dtz fixed

and inarotaing system is

o

a Frot d r
m ( dtz )rot.

the above dlows usto write
8 Fop = 8 Frp + MRWX Vyg) + M(Wx Wx T)
Defining the pseudo-forces in the rotating frame of reference
Fcoriois = = MRWX Vy) Feentrifugal = ~ m(Wx Wx 7)

dlow usto write the following

=a Fe<t + FCorioIis+ Fcentrifugal '

T
g
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The Coriolis Forcein the Ocean.

For afluid parcel, the Coriolis force per unit volumeis- r (2Wx V), where V isthe
water parcel velocity, as seen by an Earth observer. Given the component forms

of WandV inthe local Cartesian coordinate system as shown in Figure B3
W=W, ] +W,k

W=Wocosf] +Wsnf k

V=u +Vj + WK ,
the vector form of the full Coridlis force can be written
- T (2\7(5(\7)2 r(fv- footfw)i+r (- fu)j+r(f cotfu)k

where the Coriolis parameter f =2Wanf .

d? O\ar kwde)

Figure B3. The components Earth rotation rateW inalocal Cartesian coordinate system at
latitude f .
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