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CHAPTER 7- WAVESAND TIDES

In this section we will explore unsteady open phenomenawhich are periodic. By

unsteady we mean that % 1 0 aswe assumed in the previous section. Thusthe inertid

acceleration will be important in addition to other terms in the momentum equation. By
periodic we mean a characteristic parameter f of a process repesats itself in space over
ascdelL such that

f(x+L)=f (%),

or intime over aninterva T such that

f(t+T) =f (1),
or both.

In generd, waves result from disturbances to a mechanical system that isin static
equilibrium. The restoring forces attempt to return the system to equilibrium, but

overshoots occur and oscillations (i.e. waves) result.

In the ocean, winds are very often the agent that disturbs the sea surface of the ocean.
(Thegravitationd effects of the moon and sun aso disturb the seasurface) Asgravity
attempts to restore the sea surface digtortion to its equilibrium state, the potentia energy
of the origind digtortion is converted to kinetic energy in the velocity field and the
lowering sea surface overshoots until the gravitationd restoring force reverses the
process. A surface gravity wave is generated and its energy propagates away fromits

generation Ste. Surface gravity waves are the resuilt.

The wave spectrum in Figure 7.1 shows how surface wave energy is distributed among
many wave frequencies in the ocean. Wind-driven surface gravity waves wind periods
in the 1 to 30 second range are the most energetic, followed by tides. Note that short

period (or high frequency) capillary wave motion is controlled by surface tension, while
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longer period (or low frequency) gravity waves, like storm surges and tides, are a'so
influenced by earth rotation.
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Figure 7.1. A spectrum diagram of how energy in the many different types of ocean waves is
distributed according to frequency. Waves are identified according to wave period and to the
disturbing and restoring forces which act at different time scales. (Neshyba 1987)

Surface Gravity Wave Model

Here we consider asmplified modd for surface gravity waves. Aswe dl have
observed the sea surface at a particular location is a complicated superposition of
waves with different characteristics propagating from different places where they were
usualy generated by the wind at different times. However, first we want to focus on the
basic principles of wave motion, so we will explore a smple monochromatic (i.e. sngle

frequency) wave model. Later we will apply this understanding of the “essentid
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physics’ of wave motion toward more redistic observed wave fidds.

To gtart, we define the characterigtics of our monochromatic wave in terms of asine
wave which has been frozen in time and in space (see Figure 7.2). The definitions of
terms are:
ELEVATION:  h(x,t) istheingantaneous vertica departure of sealeve from
the undisturbed sealevd.

WAVE HEIGHT: H isthe distance between the wave crest and trough.

AMPLITUDE: a:% H
WAVELENGTH: L the distance between points of equal phase.

WMMENUMBERk:%?,memmhadﬁmﬁawae&nMOnme

circumference of circle with adimensonlessradius = 1.

[K] = (length)™

WAVE PERIOD: T, isthe time between points of equal phase.

[T] = unittime.
WAVE FREQUENCY: f = % isthe number of complete cycles per unit time.

_cycles
time

[f]

ANGULAR FREQUENCY: w = z?p =2p f isthe number of timesawave of

period T can fit on the circumference of acircle

with adimensonless radius = 1.
[w ] =(time)*
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Figure7.2. A monochromatic sinewaveis (above) “frozen” in space and (below) measured at a
fixed station

From these definitions, we define the speed of a particular point onawaveform (or the
phase) as the phase speed, ¢ where

col oR co W, [g=lengh
T k time

Thisisakinematicd rdationship and it istrue for al waves.

The mathematical description of our monochromatic “right-traveing” waveformis

hx 1 =acos(% -%)

=acogkx -wt).

It can also be written in terms of phase speed as

h(x, ) = acogk(x- ct)] .

The part in parentheses above are different forms of what is cdled the phase of the
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wave. |If we ride with the wave (as surf riders do), then we are actudly following a
specified point on the waveform. Thus the phase of the wave appears to be congtant to
us surf riders and the following rdaion holds;

(m -E) = congtant .
L T

If we choose to follow the wave crest then by definition the constant = 0. What isthe
relation between x (our position in absolute space) and time? The answer isfound by
rewriting the constant phase relaion above in terms of x asfollows

X:L(ﬂ):kt
2 T T

OR
X=ct

Thusit can be seen that we are moving with the phase speed ¢ towards + x. Convince

yoursdlf that aleft traveling wave (towards -X) is described according to

NOTE

So far we have considered only the kinematics of the wave. To discover any relation
between wave period T and wavelength L the dynamics must be considered. Here we

will consider the modd of Airy Waves in two dimensions.
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Figure7.3. Airy wave model geometry.

Themodd geometry (Figure 7.3) and the following assumptions form the basis for

solving the gppropriate momentum equations.

Assumptions:
1) a<<L and a<<h
(This means that surface wave formslopes (i.e. @L) are small andthe non-linear
acceleration terms (i.e. (V- N) V terms) can be neglected).
(2)  Uniform depth
(h = constant)
3 A nonviscous and irrotational ocean.
(This meansthat the vorticity iszero).
4 Fluid isincompressble and homogeneous
Thus acoustic and internal waves (due to density stratification) are not present.
) Earth rotation is unimportant
(Thus Coriolis effects are negligible and very long period waves are excluded).
(6) No surface tension.
(This condition excludes capillary waves and other very short waves).
(7 A smooth and impermesble bottom.
(8) Uniform atmaospheric pressure.
9 Two-dimensond - i.e. noy vaiations.

Theimplications of these different assumptions are asfollows:

No vorticity in (3) meansthat in two dimensons
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Tu Iw,

Tz 9x

B. The 2-D continuity relation reduces to
ﬂ_u+ﬂ_W: 0.

Ix 19z

C. The x and z momentum equations become

Ju__ 11

It r fx
and

fw_ 11p_

Tmt r fz
respectively.

The vertica momentum equation describes the balance between vertical acceeration,
the gravitationd restoring force, and the pressure gradient force which helps to convert
vertical motion into horizonta motion. That can be seen in the horizontd momentum
equation which converts horizonta pressure gradient forces into horizonta

acceerations. The above relationships above must be satisfied at dl times everywhere
in the domain of interedt!

In principle, the following conditions at the upper and lower boundaries

(i.e. boundary conditions) must be satisfied for dl times;

Th

az=h wW=—

@ =
(b) az=n p=0
© az=-h w=0

However, for smdl ?the following approximate boundary conditions can be used
instead;
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Th
At z=0 w=— =r (-
= p g?
At z=-h w=0

For an assumed waveform ? = acoskx - w t), the solution to the approximate

equations of motion and boundary conditions above is

cosh k(z+ h)
snh (kh)
w=aw 3N KD G wiy

snh (kh)
cosh k(z+ h)
cosh kh

cog(kx -wt)

p=-rgz+rga cos(kw -w )

plusthe dispersion relation

w2 =gk tanh(kh),

which describes the relation between wave frequency and wave number. Note that this
olutionisgivenin terms of hyperbolic functions. These may be new to some people
sothey are briefly discussed next.

tan(kh) is the hyperbalic tangent of kh. The hyperbolic tangent of x isdefined as

_ €-e
anh(x) _ 2 _ g-a*
coh(x) € +e* e +e*
2

tanh(x) =
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where

9 foosh(a)] =sinhx)
dx

i[si nh(x)] =cosh(x) .
dx

See Figure 7.4 for graphical descriptions

Figure 7.4 Plot of hyperbolic sine, cosine, and tangent of x and their dependences on X. in our
application x=kh.

The dispersion relation given above can be rewritten as

2 2
2L _w _g
=—=—==tanh(kh) ,
e ” (kh)

k2

which shows that, in generd, Airy waves have phase speeds which depend upon wave
number k (or wavelength L) (see Figure 7.5).
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Figure 7.5. The celerity or phase speed of gravity waves and capillary waves as afunction of their
wave length. (von Arx, 1974)

Two important gpproximations to the wave solutions above yield short and long wave
length limits

Short waves have wave engths that are much less than the water depth so they are
“deep water waves’. Mathematicdly thismeansthat khislarge i.e kh>p or

%h >p , which meansthat the depth of the water is greater than %2 the wavelength

orh>L/2.

Thusthe dispersion rdation for short wave (deep water waves) becomes

which reduces to

19 November 2004 © 2004 Wendell S. Brown
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1
= — (L
0= |55 @)

Snce L =cx T, the above can adso be written
1
c=—(qT).
2p

kh

For large kh, sinh(kh) and cosh(kh) both become e? (see Figure 7.4 above), the
short wave solutions become
h =acos(kx -w t)
u=aw g? cog(kx -wt)

w =aw g?sn(kx -wt)
p=r gag?cos(kx -wt)-r gz

The wave kinematics are shown schematically in Figure 7.6 for different water depths.
Note the relative phasesof h , u, w and p fidds.
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Figure 7.6. Kinematics of wavespropagating left to rightin (top) deep water; (middle) intermediate
depth water; (bottom) shallow water. The left panels(a) are instantaneous snapshots of the water

parcel streamlines. The right panels(b) show the trajectories of selected water parcels over afull
wave cycle. (Knauss,1976; after Kinsman in Water Waves)

The motions associated with short or deep water waves decreases with depth, such that

amplitudes a& adepth of z=-L/2 are €” or 4% of surface values. This can be seen in
the water parcel trgectories as the wave passesin Figure 7.7.
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Figure 7.7 Deepwater Airy wave parcel orbital diameters decay exponentially to about 4% of the
surface over adepth h=—z= L/2 - ahalf wave length.

For long waves, the wavedength is much greeter than the water depth, so long waves

“fed the bottom” and are cdled shallow water waves.

Mathematicdly, this mearns that

kh<£ or h<iL.
10 20

For smdl kh
tanh(kh) ~kh

and the long wave dispersion relation becomes
2
o= W_2 =9vh
k> k
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0 that

Long (or shallow water) waves are non-dispersive, that isthat their speed is
independent of wavelength. Thisis demongtrated in the in Figure 7.8 which depicts the
relation of wave phase speed and wavelength for different water depths.

20 4o 60 80  1oo
W

Figure 7.8 Wave phase speed versus wave length L (m) — adispersion diagram for Airy waves in
different water depths h(m).

Figure 7.9 shows water parcel orbits during the passage of along ( or shallow) water
wave invery shdlow water. Notice that mogt of the motion is horizontal, much like
what scuba divers fed in shdlow water with along swell.
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Figure 7.9. Wave water parcel orbital pathsin very shallow water.

For shdlow water waves pressure and horizontal velocity are undiminished with depth.

Wave Energy

Of coursein the real ocean the surface is composed of more that one monochromatic
wave. What are the consequences? To answer the question, we increase the complexity
of our modd dightly by superposing two Airy waves with the same amplitude but
dightly different frequencies and wave numbers such that w, > w, and k, > k;. The

resultant wave field is described by

a a

which can be rawritten as

Cak, k0 awo-wi0 U CakitkoO, awi+w,0 U
-X - - L’JCOSé(; =X - —tL’J
éée 2 g e 2 g ée

g € 2 gu

A _ e & _ d:l é + e % + e d‘,l
= cos K2 KO & W Wi O osa @K1 k2O &5 880 W20, 0

€& 2 ge kek ) ée 2 g e 2 ga

This can be smplified by recognizing that the coq ] to theright in the relation above
represents awave with intermediate frequency and wavelength and therefore is nearly
indistinguishable from the parent waves. On the other hand, the cog ] on the left
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represents awave with much greater L (smaller k) traveling a a Speed

DW _ w,-w; ;
== = ¢, » Which we cdled the group speed.
Dk kz-ki =

Thus the amplitude of the resultant wave is modulated according to:
Dk = =
h = acos[7 (X - c4t)] cogk(x -ct)] ,

where

ki t+ko .andW:Wﬁ'Wz

;c=
2

k=

~| =

2

and is shown in Figure 7.10.

Figure 7.10. Wave envelope of apair of interfering deepwater surface gravity waves.

The packets of waves that result from the superposition are known as wave groups

andc, :(jj—\;(v Is shown asthe group velocity. The group velocity for Airy wavesis

_dw _d

=~ = [gk tanh(k h) T*'*
G = dk[g anh(k h) ]
1 2kh
=—c(l+ ———
¢ =5 g ke

which for long waves (smdl kh)

cg=C shallow water waves
and for short waves (large kh)
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1
Cg= > c deep water waves

The group velocity is the velocity a which wave energy istranamitted. Wave energy is
composed of both the kinetic and potential energy components which can be computed
for Airy waves.

In generd the average kinetic energy per unit surface areafor awave can be expressed

as

L h
:1/2 r wu2+wz) dxdz

0 -h

KE

and the wave potentia energy can be found by computing first the total potentia energy
for the waveform (Figure 7.11).

""l
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Figure 7.11 Diagram for computing wave potential energy.

Thetotd potential energy of awave per unit width is
19 November 2004 © 2004 Wendell S. Brown
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L
PE = o[r o(? + h)[(?+ h)/2] dx
0

0 that

L f)+h2 2 L 2
PE:org%dx:rg%mrq%mhndx

0 @ °®m ©

Term () isthe potentid energy of the “dill water” and therefore is not available for
wave motion.

Term (c) iszero when averaged over awave length of a periodic wave.

Therefore the average wave potentia energy per unit surface area, PE =PE/L ,is

which upon subgtitution of the actual waveform h = acos%. reduces to

PE:% rg 11 ga® g1+ cos2kq) U

2 L
a - 2

kx) dx == d
L?(COS) 2L & 2 g~

Performing the find integration gives

PE =

r ga’.

N

The average kinetic energy for thewave KE can be computed using the Airy wave

solutions for velocity in the generd relation above. Since ?  issmadl we can assume

? ~ Owith negligible error and integrate leading to
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kE=1, aw)’
4

coth(kh)

2

cothkh) g

But since w? = gk tanh(kh) or , the average wave kinetic energy per

unit surface arealis

E= gaZ:ﬁ

-I>|l—‘

For Airy wavesthereis equipartition of energy between kinetic and potential
energy. Thetotal average wave energy per unit surface areais then

= 1
E=P E==r ga?
5 rg

In terms of wave height, which is easer to estimate, this becomes

E==r gH?

OO|I—‘

From the expression for E we can compute the wave power per unit length of wave
front according to

ol
I
mi

&

where ¢, in the wave group velocity.
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For Airy wavesin deep water the group veocity is

or

which again is more easly estimated for the laiter form. Thus

1 2
P=——rg TH?
32p g

For Airy waves in shallow water

6=+t ad

SHET

History of a Wind-Driven Wave

Let usnow explore a brief history of red group of surface waves generated by astorm
a sea. The basic assumption here is that the superposition of agroup of Airy waves
with different characteristics approximates the red sea surface. We will now consider

the amount of wave energy in afrequency bandwidth from y,, - % dw tow, + % dw
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shown schematicdly in Figure 7.12.
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Figure 7.12. Spectral energy density diagram, showing the amount of wave energy in afrequency
band dw centered on W,

The energy in the cross-hatched areain Figure 7.12 is defined as mean squared ?(?) or

— 2p 2
he=t prdwy=2
2r 2

0
where ? = acos(?t). Notethath_2 IS proportional toE :% r ga’ andisrelated to
S(w ), the energy dengity or energy per unit bandwidth according to

a2
S(w) dw = o

An energy densty spectrum, which describes energy digtribution at dl frequencies, can
be constructed (e.g. Figure 7.13). A suite of energy density spectra (Figure 7.13) and
wave energy periodograms (Figure 7.14) for afully developed seafor different wind
gpeeds shown that higher winds generate more lower frequency waves.
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Figure 7.13. Energy density spectra of wind driven waves at different wind speeds. Note how the
larger wind speeds generate waves for which the energy density peak migratesto lower
frequencies. (Knauss, 1976)

Energy peaks at sull higher value for waves of
13.5=% period, wind at 311 mys
Energy peak for waves of 11,5-5 period, wind at

229 mis

4 Energy peak for waves of 7.5 period, wind at
14.2 mis

Figure 7.14 Wave energy (kilojoules/nT) periodogram for wave fields generated by different wind
speeds. (see Table 7.1 data; from Neshyba, 1987)
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Table7.1 Characteristics of wind waves observed at sea under different wind

conditions (from Cornish 1934).

Wind Speed | WaveSpeed | Period, Length, Height, H/L Energy,
m/s m/s T,seconds | L, meters | H, meters kilojoules/m?
14.2 115 70 78 6.9 0.088 59.5
16.0 12.8 80 103 1.7 0.074 74.1
19.2 16.3 95 147 9.2 0.063 106.9
229 18.3 115 209 10.9 0.052 1485
270 215 135 290 130 0.045 2110
311 250 155 334 14.8 0.039 274.0

Figure 7.14 summarizes the frequency distribution of the quantity /2 which is

proportiona to wave energy.

After the wind stops blowing or the storm moves from the area of immediate wave
generation, the waves with different period and thus different waveengths will propagate
at different speeds asindicated in Figure 7.15.

Figure7.15. Wave dispersion separates waves generated in the wave generation region.

Remember that the longer wave groups are moving fagter. The implication of thiswave
dispersonisthat wave energy frequency spectrameasured at the distant shore will
differ from the wind-driven wave energy spectrum at the generation Site (Figure 7.15)
and furthermore will change with time as the dower wave groups arrive. An example of
aset of such spectra one might measure in the “deep” water somewhat offshore from
the coast.

Noticein Figure 7.16 how the wave energy at the lower frequencies (longer periods
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and wavd engths) arrives earliet, followed on successve days by higher frequency
wave energy (shorter periods and waveengths) with its correspondingly lower energy.

<)

S /\

P + ol
i éﬁj 5
Sw)
£

Figure7.16. Wave energy density spectrafor waves observed at a particular site on three
successive days.

Eventudly al of these wave propagate into water depths where they will become
shallow water waves and therefore non-dispersive (refer to Figure 7.17).

19 November 2004 © 2004 Wendell S. Brown



Chapter 7 - pg. 25

Wave frain maoves suri

When the bettom
shallows to less than £ 2,
the incoming wave
“feels” the riged bettom becomes a solitary wave.
via the friction between The turbulent swash

I
| At the point of breakover,
I
I
via the i en |
is moving wales particles | moves up the beach face.
|
|
|
|

the wavir train loses ts
identity: each crest

and the bottomm. The wave breaks when iis

short height H,, reaches a
Wapreicnath na o critical w‘iue, about the
L. wave height increases same as the warter depth
ta M., and wave period

remains at T

— e e e —— YA,
F fo

Figure7.17. How awavetrainis modified asit progresses from the open ocean toward the beach.
In the open ocean the wave feels no frictional contact with the bottom. Once frictional contact
begins, the wave changesin several ways simultaneously; the wave's speed drops, its height
increases, and its direction shoreward becomes more and more perpendicular to the beach line.
(Neshyba, 1987)

The phase speed and the group speed both are related to the water depth which

decreases shoreward. Thus

Since the number of waves are conserved as the wave train propagates shoreward, the

wave period remains congtant (i.e., T = congtant). Thus L must decrease in proportion

to@ . The average wave power (per unit length of wave front) is
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and dong a graight beach with uniform bottom contours this must remain congtant.
Therefore, since
2 8P 0

H*=&—=7Zh"?,
gr 9"’

H must also increase!

As aresult the wave dope which is proportiona to H/L will increase to the point where
Airy wave theory no longer applies. Continued increase of wave dope, whichis
indicated by further shoreward progress, will eventudly lead to significant non-linearities
and wave-breaking.

Before breaking the interaction of shoaing waves and the bottom lead to wave front
bending or wave refraction. The sketch below shows how the upper left hand portion
of the impinging wave front “feds’ the bottom firgt and therefore dows relative to the
lower right hand portion which gill resdesin deeper water.

The consequences of wave refraction near irregular coastlines is shown for two
examplesbelow. Each show how wave crests are refracted by the bathymetry. Thus
the ray paths, which indicated the direction of wave energy propagation, are dso
distorted. Inthe case of a“point of land” (Figure 7.18) the equidistant rays in deep
water are seen to converge on the point thereby concentrating wave energy there
relative to other parts of the coastline. The oppositeistrue for abay.
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Figure 7.18 Wave refraction upon shoaling (above); concentration of ergy on “points” (below). -
(Neshyba, 1987)

Standing Waves and Wave Reflection

Waves propagate toward shallower water, where they encounter shoding weter. It is
not unusud that the wavelength L of the incident wave is much larger than the
characterigtic horizontal distance x, of the encountered bottom dope (see Figure 7.19).

Under these circumstances, the dope appears like a verticd wal to the wave and wave
19 November 2004 © 2004 Wendell S. Brown
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reflection is probable. In generd the reflected wave amplitude is usudly smdler than that

of the incident wave. However a superpostion of an incoming or incident wave and an

outgoing or reflected wave can lead to a standing wave pattern.

Wcident wave

Ye 4 '-::-:;"'ﬁ_—i:i:_-la_ wade

Figure 7.19 Propagation of alongwave into shoaling water.

The conseguences of such awave superposition can be seen by adding arightward-
propagating incident wave to aleftward- propagating reflected wave of equa amplitude

according to:
:gcos(kx -wt) +%cos(kx +wWt)

h =acos(2p %) cos(% t).

The resulting waveformis a non-propagating or sanding wave (Figure 7.20) for which
thereisno vertical oscillation a itsnodes, located a x=nL/4;forn=135... odd
integers. The maximum verticd mation in a standing wave takes place at the anti- nodes,
located &t x=nL/4 forn=0,2/4...

even integers.

Since there is no horizonta motion (i.e. u =0) a the anti- nodes (as we will show below),

vertical wdls at such locations (e.g. x = L/2) without loss of generdity. Exploring the
relation between ? and u, asfollows:

at=0,T/2and T, we find @ther maximum or minimum amplitude and
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zero current everywher €.

at=T/4or 3T/4, wefind zero amplitude and either maximum current

u or minimum current —u everywhere.

Thora wae w -P.o..?:

MoX T 'D'a- 9o* .

Figure 7.20. A standing wave pattern confined between apair of vertical walls.

SEICHES: A Simple Case of Standing Shallow Water Waves

Congder the case of standing wavesin an enclosed shdlow water basin with awidth W
and constant depth = h; thus afixed wave phase speed c= @ . Also the standing

wave anti-nodes must be located at the basin boundaries (Figure 7.21), because the
horizonta current must be zero there.
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Figure 7.21 Different seiche modesin a shallow water basin.

Thislimits the possble haf wavdengths of ganding wavesin the basin to submultiples of
the basin length W, such that

L2W 2W 2w 2w

1 2 3 N
where N (= 1,2,3..poditive integers) are the number of half waves contained in the
basin. But, becausec=L/T = @: congtant; or L =T,/gh , subdtitutioninto

rearrangement of the above relation shows that only certain wave frequencies are
permitted, according to

1
T, 2W

fy =

These f \ aethe“naturd oscillation” frequencies of the basin and are known asthe
basin seiche frequencies.
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L ong Wave Dynamics

The continuity relation for one-dimensiond “long” waves h (x,t) (propagaing ina
constant depth = h ocean for which h /h &l is

Th fu
—+h—=0
Tt * X @

where u isthe verticaly averaged horizonta velocity,

The appropriate momentum equation with bottom friction only is

'Hu+u'HU_ Th t,

_ ___g___

It X ix h

where t  isthe bottom friction. The above relation can be further smplified by

assuming linear and frictionless dynamics. Thus the momentum equation above becomes

< t9.—=0, (b)

which is a balance between the pressure gradient, due to sea surfacettilt, and the inertid
acceleration. By operating on the continity relation [eg.(a)] with 1/t and the

momentum relation [eq.(b)] with - h //Tx , equetions (a) and (b) become

2 2

12 ft9x

son Y gy TN g
TeIx = 12

respectively. Adding the two equations above, yields the following wave equation for
? done

Th . Th _

12 e

Thisisknown asthe Shdlow Water or Long Wave Equation
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Application of the Shallow Water Wave Equation to the Coastal Ocean

Congder the one-dimensiona, congtant-depth, frictionless, continental shelf region
(Figure 7.22), with a zero horizontd velocity (u = 0) boundary condition at the coast (at
x =0).

=¥ — T - - — - - — ~—L ¥
h
F'.-l-

Deep

OCTA —~

Figure 7.22 Standing shallow water waves over a continental shelf which results from an incident
deep ocean wave with amplitude a,.

The solution for shallow water waves on the shelf is composed of the sum of aright-
hand propageting wave, with an arbitrary amplitude a, is

h'= goos(kx- wi)
and areflected left-hand propagating wave

._a

h = E cos(kx +wt)
both with the digperson reation

k = i .
Joh
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The totd wave solution on the shdlf, which satisfies the continuity and momentum
equations, and the velocity boundary conditionat x =0, is

h =h"+h =acos(kx) cos(wt) :
inwhich a isarbitrary wave amplitude to be determined. . To show the latter, use the
continuity relation to find u from ?as follows:

-hﬂ—u=-was'nwtcoskx

which upon integration yieds
u= W—asinkx snwt :
kh

since%: gh = congant .

There are severd features of this solution that are congstent with the standing wave
solution, namdy

First: The maximum wave devationh =h, . occurs Smultaneoudy
everywhere on the shdf;
[For example at the coast (x=0) a t=0, h =h© =al].

Second: The velocity and eevation variahility are 90° out of phase;
Third: The horizontal velocity isdways zero a x = 0;

Fourth: Themaximum devationh =h__ isnon-uniform acrossthe
shdf.

The magnitude of a is determined by gpplying the boundary condition a x =- 7, which
isthat the incident ocean wave, with amplitude a, must dwaysto be equa to the shelf
wave & the edge of theshdf x=-/. Thusat=0,

h (- ¢/)=acos k (- /)=acos k(¢) = a,.

or
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ao
cosk 7

a=

so that the shdf standing wave solution becomes

h =(—2

) coskx coswt .
cosk/’

Note that in this frictionless ocean, this shdf standing wave becomes infinite for the
Specid geometrical caseswhere k ¢ = %; or where the shelf width ¢ isrelated to the

wavelength L according to

Thus, for example, when the shelf width is% of thewavelength (n=1; /= L/4),a

shallow water wave with awavdength L =T @ and frequency

f :i:@
T 4/

is “resonant” with the shelf geometry.

Conversdy, if the degp ocean isforcing an approximate twice-dally tidd wave (with a
period of T = 4 x 10%seconds) on a shelf with depthis h = 10m, then the shelf width that
will produce tidd resonanceis

. T /dh _ (4x10'9)(10 ms?)
4

=100km
) LU KM

Thusthishighly idealized model tells usthat atwice-daily (or semidiurnd) deep oceanic
tide of frequency will force an infinite amplitude! standing wave on a continentd shelf of
width ~100 km. In redlity, friction (which this modd does not include) plus continuity

would not permit an infinite amplitude response to ever occur. However amplified tidd

responses do occur in various shef regions of the world' s oceans, including the Gulf of
Maine and the Argentina shelf.

19 November 2004 © 2004 Wendell S. Brown



Chapter 7 - pg. 35
Tides
The agtronomicaly-forced surface gravitationd tide has long wave lengths compared to
the ocean depth and thus is an example of a shallow weater wave. Tidd waves are
grongly “forced” by the motion of the earth rdative to asronomy and in that differ from
wind-generated surface gravity waves, which run “fredy” after being formed. Also the
periods of surface tides are large enough to be influenced by the earth’ s rotation.
(Remember thet Airy waves were not influenced by Earth rotation because of ther short
periods.)
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Figure 7.23 Observed tides in Port Adelaide are semidiurnal (twice-a-day) and in Pakhoi diurnal
(once-a-day). Tidal rangesin both locations exhibit a spring-neap cycles that are out of phase

The tidal response of the global oceansis complex because of the combined
agronomicd tidal forcing of the earth, moon and sun. The observed tides differ
sgnificantly from location to location because of the shalowness and geographica
complexity of the globa ocean baans. For example, thetidesin Pakhoi, Chinaare
primarily once-a-day, whilethetidesin Port Adelaide, Audrdia are primarily twice-a-
day (Figure 7.23). Although the tides a both locations include both semidiurnd and
diurnd tides (note negp tidd variahility) respectively but they are too smal to detect
except when the tidal range is small. Observed tides elsawhere in the world’' s ocean are
composed of differing mixtures of both semidiurnd and diurnd tida components.
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How do we make sense of this complex system? One way isto consder just the
semidiurnd tide in the Atlantic ocean and map its lines of congtant tidal range (cotidal
lines) and constant tidal phase (copahse lines) on the same picture as shown in Fgure
7.24 - acotidal chart for the M, semidiurnd tide. Thisisaclassc Sgnature of an
amphidromic system in the north Atlantic. At its center — the amphidromic point -
thereis no vertica movement of the sea surface.

100

BO
4

‘,/‘E\j’.--

40°

]

Cotidal and corange lines of the M. Atlantic. The times of high water referto
the moon's transit through the Greenwich meridian, the co-range lines are in meters.

Figure7.24 A cotidal chart for the M, semidiurnal Atlantic Ocean tide. (Thurman, 1975)
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The north Atlantic M, semidiurnd tidal cotida chart (Figure 7.24) is a distorted spoke
whed pattern because of theirregular configuration of the continents, variable ocean
depths, and friction. The world's ocean tides are just a complicated interaction of
severd amphidromic systems.

A conceptua modd of the north Atlantic amphidromic system isillugtrated in Figure
7.25. Moving from A to B to C to D, we see what amountsto arotary standing wave.
This“spoke pattern” of cotida lines and corange line centering on the hub of the
“whed” ismuch cleaner in this conceptua model.

High Rising
F
_ e
Law Falling
A (=}
Falling Lew

D

Hodal A

——— Line

|_-Amphidromic point
o
!

Figure 7.25 Schematic of arotary tidal amphidromic system. (NOTED, A, B, and C in the lowest
panel should bereplaced by A, B, C, D respectively) (von Arx, 1974).
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Equilibrium Tides Rather than trying to ded with the full complexity of real ocean
tides, we will investigate the effects of the moon (and sun) on an ocean with auniform
depth that is grester than 25 km and uninterrupted by continents (see Figure 7.26). In
contrast to the real ocean, this configuration permits the sea surface digtortions
produced by the sun-moon gravitationd effectsto remain in phase with the astronomy
asthe earth rotates below it. Thissmplified moded of ocean tides forms the basis of
equilibriumtidal theory, which, though unredidtic, hdps to explain the origin of the
principa frequencies associated with redl tides.

The Basic Dynamic System Balance: The moon-Earth (and sun-Earth)
gravitationaly-forced sea surface distortions vary with latitude and thus can be detected
by observersfixed on the rotating Earth. By contrast, the Earth-rotation produced
digtortions of sealevel do not vary with the longitude and thus are not observed. Thus
we can assume an irrotational earth-moon system to start the discussion. (The effects of

the sun will be incorporated |ater.)

Figure7.26 Equilibrium tidal oceanwith a depth of at least 25 km over the entire Earth.
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The earth-moon system rotates at arate of w about a point x from the center of the
Earth (see Figure 7.27). From an earth observer’ s point of view, thisbasic sysem
dynamic balance is between the gravitationd attraction between the moon and earth and
the centrifugd “force” associated with the circular motion of the earth’s center of mass.
Thisis depicted an dternate way in Figure 7.28.

Figure 7.27 To dynamically balance the earth-moon gravitational attraction, both the Earth and
the moon rotate around the Earth-moon system center of mass or rotation (SCR - located a
distance of x ~4600km form the Earth’ s center). During one monthly counterclockwise (CCW)
rotation of system, the SCR traces acircle of radius = x through the irrotational Earth (see main
text). Simultaneously the sub-lunar point onthe Earth’ s surface also tracesa CCW circle with a
radius x; starting at (1- light blue) and progressing through (2 - green), (3 - purple), and (4 — dark
blue) and back to (1).

Congdering the dynamics of apair of fluid parcels (each with mass 1) on the surface of
anirrotationa earth (at b and a in Figure 7.28). The circular paths of these parcels (as
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the earth and moon turn through their monthly cycle) are indicated by the dashed linesin
Figure 7.28. Thismotion occurs because the center of earth-moon system rotation
(“gpin center” a CG) moves through the irrotational earth.

\

&

Path of Pathof the Path of 0 b= j
pointa earth's center point & ~ y 5
N\
;‘ —

A

Figure 7.28 The dashed line through the center of the earth is the path of the earth’s center as it
moves around the common center of gravity (CG) in the earth-moon system. The circular paths
followed by pointsaand b areidentical to that followed by the earth’ s center. (Thurman, 1975)

Mathematically the Earth-moon gravitationd forceis

F=G meRT’“ ,
where the gravitationa congtant is G =6.67x10°dyne- cm?gm?;
Earthmassis me =5.975x 10*’gm ;
Moon massis Mm = 7.343x 10°gM =1/81.56 m. ;
Distance between Earth and moon R =3.844x10°km;
Eath radius r=6100km;

Digtance between Earth & syggem CM ~ x = 4700 km.

The balance between and the Earth-moon gravitationa force and the centrifugdl force,
associated with the system rotation, demands that
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- —_~Mem
Fc—meWZX—G T )
R2

where w isthe system rotation rate, which can be determined according to

G
w2 =—2 = 0.5% 10™ sec? ,
XR

which corresponds to a system rotation period of T = 27.3days (Sdered month).

The Tide-producing Force: The tide-producing force is the result of imbaancesin
the basic system dynamic baance discussed above. The distribution of tide producing
force over the earth’ s surface can be determined by consdering an array of fluid parcels
(with mass = m) moving in CCW drdes (radius x = 4700km) in an inertid frame of
reference with centripetal accelerations a. (see Figure 7.29). As seen by an Earth
observer, thetotal force on each of the fluid parcels is the sum of the gravitationd force
fy toward the moon and the centrifugd force f. = ma, pointing in the opposite direction

to & and fy according to

Figure 7.29 Thecircular orbits of water parcels a, b, ¢, d, and e maintained by their respective
vector centripetal accelerations. Notethat all of the vectors are equal! and thus have equal and
opposite centrifugal force vectors as viewed by an earth observer. (Thurman, 1975)

The centrifuga force on the parcel, based on the result above, is by definition negative
everywhere given by
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fo=mw’x = mGnl"‘
R

The magnitude of the gravitationd force on the parcel varies, depending on whether the
parcel islocated on the sde of the Earth toward the moon and thus R-r distant from the
moon; or located on the Sde of the Earth away from the moon at a distance R+ r
according to

_ Gmn Ir
(RFr)?

g

Thus the totd force acting on each parcd is

x

1 1
fT:fg'fc:memm'?

MGmm €R?- (R*F 2R + 1)U
AR EGEL

-0

[N

fr=

MGmy, €+ 2(1/R) - ("R )?]U
RZ & [LF(RP ¢

fr=

Since r/R ~ 1/60 << 1, (r/R)? can be neglected relative to other terms and

2r
fr~% mem_3
R

where (+) indicates that f, > f. at the sub-lunar point and (-) above indicates that f. > f,
at the antipode.

The basic result here isthat the tide-producing force (TPF) is proportional to the
inverse cube of the earth-moon separation distance. Thus the tide- producing force

decreases more rapidly than does the gravitationd force itsdlf. As a consequence of this
result, the sun’s TPF is only 43% of the moon’s TPF despiteitsfar grester mass. Thisis
illugtrated by the following caculation
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sun
fT

3
— Msun Rrr;oon =0.43
Mm  Raun

f moon
T

The digtribution tota TPF at the surface of the Earth (or our equilibrium tidal ocean) is
illugtrated for ageneral Earth-moon orientation at some arbitrary angle relative to the
Earth’s equator in Figure 7.30a. Note that on the Sde of the Earth facing the moon that
fg > fcand away from the moon f; > f; .

The TPF can beresolved into itsloca verticd (z) and tangentid components. The
meagnitude of the vertica component of the TPF isvery small compared to gravity (the
order of 107 g) and thus has a negligible effect in producing tides. However,
digtributions of the tangentid component of the TPF - cdled the tractive force - acts
effectively on the mobile water to produce the double bulge in ocean sealevel seenin
Figure 7.30b. (On tidal time scales the earth can respond eagticaly and thus the TPF
tractive forces also produce solid “ earth tides’).
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Figure 7.30 (a) The distribution of the tide-producing force TPF; it isdominated by f. on the side
of the Earth facing away from the moon and by fg on the side facing the moon. (b) The distribution
of the tangential component of the relatively small TPF - the tractive force — varies over the Earth’s
surface, reaching its maximum value along two circleswhich lie at 45 ° relative to the plane of the
earth-moon (or sun system). The tractive force is unopposed and causes the two equal sea surface
“bulges’ on either side of the Earth (hatched). (Neshyba, 1987)

This distribution produces a double tidal bulge (as indicated above) which remains
dationary relative to the earth which rotates beneath. There are anumber of interesting
consequences of this set of circumstances, namely

1) Two high tides are observed each a lunar day, whichis 24" 50™. The extra
50™ isthe time of the extra earth rotation that is needed to “ catch up” to the

moon. The moon moves 12.2 ° ( = 360°/29.53") every solar day asit
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“revolves’ about the earthin a 29.53" synodic or lunar month (defined as the
time from new moon to new moon). Figure 7.31 shows the difference between
agdered and lunar month.

&
-

-
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Figure 7.31 The sidereal and lunar month differ by the time it takes for the moon to move so that it
isoverhead at “solar noon”.

2) Equatorial tides occur two times during the month when the moon passes
through the plane of the earth’ s equator (i.e. the sub-lunar point islocated at the
earth’s equator — see Figure 7.32). At these times, the twice-a-day or
semidiurnal tides have equa amplitudes.

3) Normally the double tidal bulge is oriented at angles to the earth’ s equator and
the semidiurnd tide has different amplitudes during alunar day (see Figure
7.32). The amplitude difference between the semidiurna tides is known asthe
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once-a-day or diurnal inequality.

Tidal
bulge
I

1Zh |.5period [8h

Oh 6h 12h 18h 24 h

287 N lat. 'y I
(our obser- Diurnaj inequality
verin A, B, ' )

C.,and D
above)

0° lat.
{ Equator)

28" 5lat.

Figure 7.32 An observer on arotating earth sees two high-water marks during onerotation. In the
special cases two times amonth, when the moon isin the equatorial plane, all earth observerswill
see two equal amplitude high tides-called equatorial tides- each lunar day. Generaly, however, the
two high tides are of unequal heights—hence adiurnal inequality. These cases areillustrated in the
lower panel withtypical sealevel records during onerotation of the earth. Note that the equator,
the two high tides are always of equal amplitude. (Thurman, 1975).

4) When the sun and the moon are in conjunction or opposition (Figure 7.33)
ther tide-producing effects reinforce to produce spring tides of maximum tida
range twice each month. When the moon and the sun arein quadrature ther tide-
producing effects compete to produce neap tides of minimum tida range twice
each [unar month.
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(a} Meap tides Spring tides Meap tides

During the

During the full moon
crescent moon

and also during the
b} new maoon

Figure 7.33 (a) A monthly tidal record highlighting the spring-neap tidal amplitude envelope,
which resultsfrom (b) the monthly astronomical interactions of the lunar and solar tidal forcing or
the “beating” of the lunar and solar tidal forcing cycles.

5) Changesin the declination of the orbits of the earth (*around the sun™) and
moon (“around the earth”) produce subtler changes in the tide- producing

forces. For example,

@ Anannual cycle in the tides occurs because the earth rotation axisis
tilted 23.5° relative to the plane of the ecliptic (i.e. the plane of the sun-
earth system). Thus, asthe earth “ orbits’ the sun (see Figure 7.34), the
declination of the sun relative to the earth’ s equator changes from
latitude 23.5° N at the summer solstice to 23.5° S a the winter solstice.

(b) An 18.6 year cycle occurs because the plane of the earth-moon
rotation system precesses relative to the ecliptic plane. Thus the
declinaion of the moon relative to the earth’ s equator changes from
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Figure7.34 (upper panel) Anannual tidal cycle arises because of the 23.5 ° inclination of the
earth’ s axis relative to the plane of the earth-sun (plane of the ecliptic). (upper middle panel) An
18.6 year tidal cycle arises because the plane of the earth-moon rotation precesses. (lower middle
pand) A monthly tidal cycle arises because of earth-moon separation changes. (lower panel)
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18.5° to 28.5° during this period.

2350 Til
of the earth

arbit around
Plane of the Sun
moan's arhit

230

Ecliptic plane

Ome year cycle

Another annual tidal cycle arises because of earth-sun separation changes.

6)

Changes in the distance between the earth and moon and earth and sun
produce changes in the tide producing force (proportional to 1/R%). Thus there
are observable changesin the tides due to the dlipticity of the moon’s orbit
around the earth and the earth’s orbit around the sun (see Figure 7.34). For
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example,

@ Ananomalistic monthly cycle (27.5 solar days) the moon moves from
perigee (at 375,200 km from the earth) to apogee (at 405,800 km)
and back again.

(b) A yearly cycle asthe earth moves from perigee rdative to the sun to
apogee and back again.

7) There are even longer period tides, which result from other astronomica
vaidions induding the 100,000 year cycle in the eccentricity in orbit of the
earth “around the sun”.

Thus the earth’ s oceanic tidal variability reflects by the different tones (i.e. frequencies)
of the earth-moon-sun gravitationd interactions. It turns out thet al important tidal
frequencies, can be defined in terms of the Sx principal frequencies defined in the
Table7.1.

Table7.1 Thesix principal frequencies of ocean tides.

Source Angular Frequency
earth rotation 2p
wW; =———=360°-12.2%d
lunar day
lunar revolution
= — 2 =13.176°/d
Sidereal montt
solar declination 2p
Wh= =0.985°/d
solar year
revolution of lunar perigee 2p
Wp=—"—-—=0111°/
8.87 years
precession of lunar node 2p
Wy =————=0.0529°/d
18.6 years
revolution of solar perigee 2p
= =0.00005° /d

Ve 50,000 years

The ocean tide anywhere on the earth can be decomposed into 400 partial tides (or
tidal species) each with aunique frequency w; that can be expressed in terms of these
principa frequencies such that

w; =aWw, +a,w, +aw, +a,w, +a;wy +aw,
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where g are aset of Six integer coefficients (wherei = 1,2,3,4,5, & 6). Doodson
developed a shorthand notation for the different tidal species called the Doodson
number. For example, the interaction of lunar declination changes and the earth’s

rotation lead to the pair of frequencies w, +4w, and w, - 4w, (as explained below);
with Doodson number specifications (14000 0) and (1 - 4 0 0 0 0) respectively.

Physicdly these many different partia tides and their frequencies arise out of the
nonlinear interactions of the different astronomica forcings and the rotating earth.

In Figure 7.35 the moon is declined relative to the earth’ s equator - with colatitude D.
We seek to compute the tide-producing force a a genera point p with a colatitude g .
The longitude difference between the sub-lunar point and point p isangle & which
changeswithtime at arate w, according to

a:th:pr,

TL

where T, isthe lunar day period = 24" 50" (and 1 =t ) . Colatitude angle ? also
changes with time, but at the dower rate w._.

m DGy,

Figure 7.35. The general geometrical configuration of the moon-earth tide-producing force case.
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It can be shown that the tide-producing force Fr at an arbitrary point p is

Mm 3 1 .
Fra ?{E (cos? D-§) (long period)
1 .
+Es'n 2Dcosw, t  (diund)

+%sin ’Dcos2w; t}  (semidiurn d)

whereagain] =t .

Expandingthe gn 2D term in the diurnd component of Fr yidds

FPa% dn 2Dcoswy, t

a % cos(4wst) cos(w; t)

a cos(w; +4wg)t+cos(w; - 4wst) .
wherel =t .

Thus a spectrum of the tide producing force does not one peak atw, , but rather a

double pesk at w, 4w, respectively.
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Figure 7.36 Line spectrum of two tidal constituents.

Likewise the nonlinear interactions among other periodic tide- producing components
leads to additiond characteristic frequencies.

Thusthetotd tide-producing force can be conceptualy modeed as the combined
contributions of asuite of separate astronomica bodies orbiting a non-rotating earth,
each with its own characterigtic frequency, w, . Each astronomical body produces a

partial tide T; according to
Ti=Aicos(wit+e;)

where the subscript i isthe body ID, A; isthe partid tidd amplitudeand e, isthe

reference phase. We will use this model to describe the red ocean tides.

While the equilibrium tidal theory is useful in describing the ocean tidd forcing, it does
not explain the actua ocean tides asthey are observed on the earth. (It actudly
explains earth tides better). As discussed above, restricted depths, friction and
continental blockage produce a deep ocean response to the astronomicd tidal forcing
that isa complicated set of interacting amphidromic sysems (e.g. Figure 7.24). The
tides on the continent shelves, in coadtd regions and in estuaries usudly are forced by
the deep ocean tide and are modified even further by geometrica, non-lineer fluid and
frictiond effects.

Nevertheless the characteridic frequenciesin the equilibrium tide are present in the
observed tides nearly everywhere. Because of thisfact, people were able to develop
predictive schemes for tides about 200 years ago... long before we understood their
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dynamics. The empirical means used to make these tide predictions is the next subject
to be discussed.

Harmonic Analysis of Tides

Because the astronomical forcing of tides is essentialy condtant, it is possible to
decompose along record of sealevel observations at a particular location into a unique
set of partid tidal components or tidal constituents defined according to

h,=H;cos(w;t+ki);

where the pair of harmonic constants H (amplitude) and k , (phase) at each w, are
determined using the observations and least squares fitting techniques. Thei pairs of
harmonic constants (H;, k ;) are used to produce a prediction of tidal sealevel change
at that dtation according to

h® =3 h,=3 Hicostw t+k).

For most purposes, less than 10 constituents are required to describe the tide
adequatdly at aparticular sation. An example of aharmonic andyssof tidesis
presented in Figure 7.37 and Table 7.2. Note that this method is useful in predicting
only that part of the sealeve fluctuation which (1) occurs at astronomica frequencies
and (2) is phase-locked to the astronomica forcing. The non-tidal resdua sgnd is due

to other oceanic processes including weather forced phenomena, hydrodynamic non
linearities, (V- N)V terms) and wave phenomena at non-tidal frequencies. Fortunately

the principa contribution to sealeve changeis usudly the tides so that harmonic
andyssiswiddy useful. The harmonic andyss of ocean currentsis more difficult
because these are sgnificant ocean currents at tidal frequencies which are not phase-
locked to astronomical forcing. Thus currents are more “noisy” when it comesto
extracting the astronomical tide usng harmonic analysis. Internd gravity waves, which
we discuss briefly next, represent one of the principd “contaminants’ of the tidal

currents.
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Figure 7.37 Harmonic decomposition of an observed sealevel record (dash-dot) into several
constituents, which when added yield the computed (solid) predicted tide.
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Table 7.2 Partial harmonic components of the composite tide

Name of Partial Tides Symbol Speed Period Coefficient
Ratio
(degreesper |(solarhours) [ M, = 100
mean solar
hour)

Semi diurnal Components

Principal lunar M, 28.98410 12.42 100.0
Principal solar S 30.00000 12.00 46.6
Larger lunar dliptic NP3 28.43973 12.66) 19.2
Luni-solar semidiurnal Ky 30.08214 11.97] 12.7
Larger solar eliptic T, 29.95893 12.01 2.7
Smaller lunar dlliptic Lo 29.52848 12.19 2.8
Lunar elliptic second order 2N, 27.89535 12.91 2.5
Larger lunar evectiona ?2, 28.51258 12.63 3.6
Smaller lunar evectional 2 29.45563 12.22 0.7
Variational Mo 27.96821 12.87 3.1
Diurnal Components

Luni-solar diurnal K1 15.04107 23.93 58.4
Principa lunar diurna O, 13.94304 25.82 415
Principal solar diurnal =1 14.95893 24.07 194
Larger lunar eliptic Q: 13.39866 26.87 79
Smaller lunar dlliptic M 14.49205 24.86 3.3
Small lunar dliptic J 15.58544 23.10 3.3
Long-Period Components

Lunar fortnightly M, 1.09803 327.86 17.2
Lunar monthly M, 0.54437 661.30 9.1
Solar semiannual S 0.08214 2191.43 8.0

19 November 2004
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Other Ocean Waves

Internal Waves

Thus far we have considered surface gravity waves, which have a sgnificant expresson
a thear-seainterface. The dendty difference between air and water (in aratio of

about 1/800) leads to a gravitationa restoring force for fluid which is displaced
verticaly. Though densty differences are much less a depth, asmilar restoring forceis
present and internal gravity waves are possible. The surface expresson of internal

wavesisvery sandl, hence the name.

l
f
|
3’:--'.'L___+_
|

Figure 7.38 Configuration of an interfacial internal waves.

Consider the casein Figure 7.38, where aless dense (r ') thin layer (h) overliesa
deeper layer (h) of dightly more densewater (r ) (Figure 7.37). Theory indicates that
the internal wave of wave length L has a phase speed of
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oro-r
c ={gh (r—..)}”2

where L/20>pK  and L/2<p" . Thusthe“shalow water” internd wave

gpeed is consderably less than its surface water counterpart because the reduced
density differences decrease the effect of gravity asindicated.

In most of the ocean, the density varies more smoothly with depth and the more
complicated corresponding theoreticad andyss indicates that internal waves can occur at
al depths, where there is stable verticd dengty profile. Frequencies of theseinternd
waves can vary between an upper limit of theloca buoyancy (or Brunt-Viasda)
frequency, N(z) and alower limit of the local Coriolis parameter f (f )=2Wsn (f ).
The digribution of internd wave energy is determined by the differing forcing
mechanismsthat are relevant.

An important exampleistherole of barotropic tidal currents— associated with the
surface tide- impinging on the bathymetric dopes such as Stellwagen bank in
Massachusetts Bay. A set of temperature measurements that we made in the deep
ocean off Southern Cdlifornia showed a concentration of energy a semidiurnd
frequencies. Theprincipa temper atur e fluctuations were due to interna waves of tida
frequency, with amplitudes of nearly 100 m and wavel engths of about 100 km.

Although this set of observations reveded particularly large internd tides (because it is
generated nearby), it has been shown that interna tides represent an important

component in the internd wave fidld everywhere in the world’ s oceans.

Satdllite observations of the sea surface indicate that coastal ocean has important areas
of internd tide generation and propagation. This mechanism for internd tidal generation
adsoisfound localy in Massachusetts Bay. An array of moored temperature and
conductivity measurements near Stellwagen Bank have been used to compute density
time series at 6 levels. Using linear interpolation techniques, we produced the suite of
isopycnd displacement time series shown in Figure 7.39.
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ISOPYCNAL DEPTHS
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Figure 7.39 Isopycnal depth time series— inferred from density measurements- indicate strong
internal tidal signatures throughout the water column

The energy spectra of these time seriesin Figure 7.40 clearly indicate the importance of
the internd tide in the region.
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Figure 7.40 (above) Isopycnal displacement energy density spectrum. The prominent peak in the
semidiurnal (~12hr) frequency band is consistent with the proximity of the measurementsto the
internal tidal generation zone on Stellwagen Bank. (b) Variance-preserving spectrum of the
isopycnal displacement energy indicates the dominance of the semidiurnal internal tidal energy in
the 12 hour frequency band.
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An analysis of these data has enabled usto congtruct the kinematicd picture of the
isopycna displacement and current structure in Figure 7.41. Note the zones of
horizonta current convergence in the upper water column (strongest at the surface) and
divergence at depth leading the isopycna wave crest as it propagates from right to |eft.
The current shear associated with such wave motion can become unstable leading to
interna wave bresking and mixing. Studies indicate that breaking internal wavesin
bathymetric dope regions may be important mechanisms for resuspending the sediments

that form the sea floor in these regions.

tidal period
ﬂﬂ' T/l n 3xsl i
1 T |
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Figure 7.41 Internal Wave Kinematics: The spatial distribution of isopycnal displacement (-) and
horizontal velocities associated with one cycle of am M, internal tidal wave in an ocean with
exponentially decreasing N?(2).

Planetary Waves

This class of waves are generally found at periods greater than aday and are due to the
effects of a Coriolis parameter, f = 2w anf , which varieswith laitude. 1ts dynamics

can beillugtrated by consdering the movement of a column of water northward in a
frictionless, constant depth ocean. Asf increases the water column will exhibit
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increased negdtive relative vorticity and will circulate clockwise.

Corialig N N
i |
1‘unh'.r

Figure 7. 42. Vorticity change associated with a northward displacement of alarge ocean parcel.
Note that the flow is quasigeostrophic.

The Coriadlisforce a the northern extremes of our column will be greater than that at the
southern extreme. Thus there will be a southward restoring tendency. If the columniis
pushed southward through the latitude of zero relative vorticity then Vv will increase
producing anti-clockwise motion and a corresponding northward restoring tendency.
Thus the variation of f provides the horizontal restoring force for waves whose phase

propagates in the west direction according to

qf
C :—(ﬂy)o:_g
p k2 k2

where k is the wave number.

The group velocity of these dispersive waves can be either east or west. Notethat in
contrast to surface waves the shorter period waves are the longer wavelength waves

and conversdly.

Although the dynamics of oceanic planetary wavesis smilar to those of amospheric
planetary waves their observed wavelengths and frequency range is different. Thusin
contrast to the aimosphere where planetary waves play a key role in the dynamics of
westher, it is not clear what the role of oceanic planetary wavesis. Massve theoretica

and experimentd efforts begun during the 70’ s are beginning to reved the importance of
19 November 2004 © 2004 Wendell S. Brown



Chapter 7 - pg. 62

these motions to energy transfer in the ocean.

We are now at the stlage where it is useful to look at the energy density spectrum of
oceanic processes. The frequency (actualy period) spectrum (Figure 7.43) shows the
relaionship of the important oceanic processes we have discussed. Thistype of
presentation is useful for illugtrating the full dynamic range (in terms of energy and
frequency) of these processes.

Energy Density Spectrum
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Figure 7.43 Spectral energy densities characterizing the important oceanic processes.

However an energy (or variance-preserving spectrum (Figure 7.44) is more useful for
comparing the kinetic energy per unit volume of different processes. Clearly energy
concentration in physical space is greatest for surface gravity waves with capillary
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waves a close second.
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Figure 7. 44. Volume energy densities associated with the important oceanic processes.
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Findly we summarize the dispersion characteristics of oceanic processesin terms of a
wavelength wave period (Figure 7.45) of that set.
Period - Wavelength

Thermal
12 :fjaiir:ry circulation
Currents wind driven
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Figure7. 45. Dispersion diagram for the principal oceanic processes.
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PROBLEMS CHAPTER 7

Problem 7.1 Testing Airy Wave Solutions
Show that the Airy wave solutions (page 8 in the main text) dgebraicaly satisfy

the equations for continuity and momentum, as well as the boundary conditions,

ie

Boundary Conditions:

n(x,t)
=0 -_‘l:::{ £
"-1,_“__‘_-_‘_
an :
atz=10 w:a— h AT i T f7 777 777 F77 77 it 777 77
P =peEn

atz=-h w=0

Problem 7.2 Wave Kinematics

Show that the superposition (i.e. addition) of thefollowing two waves
h, =(a2) cogk, x-w,; t)] and h, = (& 2)cod k, X -w, t)]

wherek, > k; and w, > w,,

AVves
h = acos[%k (X-cqt)] COS[E(X -(_Zt)] ,

1t Wo

Kitka. withw = W .and

_—, C:

~I| = |

where DK = k., - k, »K, with k =
¢, =Dw/ Dk =(w2 -wi) /(k - ko), With DW = w, -wy <<W

19
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Problem 7.3 Wave Energetics

a)

b)

d)

d)

In generd, group velocity of awaveisCg= (;ll_\liv . For Airy waves, with

w?= gk tanh(kh) ,
show that

Cg=2ca+—2Kn
2 dnh 2kh

where C = ?/k the phase velocity.

)

Given awave of theformh = acos (2p x/L), cdculate the average kinetic
energy per unit surface area, assuming Airy waves.. (Hint: assumeh =0so the

integral can be written

LO

KE= —— OO+ w?) dx dz
2L ;7

How long would it take for energy associated with a deep water wave, with L =
100 m, to propagate 1000 km?

The deep water wave in part €) runs into shalow water near the coast and is
observed to have awave height H = 3min awater depth of 5 m. Compute its
power at this depth. What would its amplitude a, wavelengthL, and wave
dope bein awater depth of 2 m? Are conditionsfor Airy Wave theory
satisfied for the wave a this 2 m depth?

What isthe power (in kilowatts) associated with 1 km aongshore segment of an
H = 0.5mwave with a period of 5 seconds - atypica wave in the Gulf of
Maine.

Assuming 20% efficiency in converting wave power to eectrical power,
compute how long awave energy extraction facility would have to be in order
to power New Y ork City; with a 300 megawatt demand.

Speculate on the environmental impact of such afacility (assuming it could ever
be constructed).
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Problen 7.4 Long Waves

a)

b)

Given the sketch below

$ nx

R e e PR

u(x) —p h(x) —

¥ >

Yy yirryiyriyliyy

t— (%) >

X X + 8x

show that the one-dimensiona continuity relation for shalow water waves for
which the horizontd velocity isuniform with depth is

T fun+njj=o0

Mt

andwhenh /h << 1 reducesto

m+hM:0

It 9 x

Show that the following wave equation

Th  gh

1 P °

is satisfied by along wave with the generd solution

h = acogkx £ wt)
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Problem 7.5 Basin Dynamics

a)

b)

The measured sealeve @ the inlet to the estuarine basin (trianglein figure @)
reved's an ostillation with a period of 6 minutes superimposed on atide record
(figurea) .

J7077777777077077 779774
R Tide Station
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Figure b
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Elevation
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Figure a

Let usinvedtigate the possibility that a basin standing wave might be responsible
for the observed oscillation. Given that X =2 km and the basin depth Z =3m
is congtant; what is the allowed frequency of afirst mode wave, i.e., one for
which L = 2X? What isthe wave period in minutes? What can you conclude
about the observed oscillation?

What is the frequency of the M, tide?

What sze must abasin (of depth equd to the one shown) bein order to dlow a
fird mode standing wave with a frequency equd to thet of the M, tide?

19 November 2004 © 2004 Wendell S. Brown



Chapter 7 - pg. 69
Problem 7.6 Propagation of Long Gravity Waves Onto the Continental Shelf

Consder the following mode bathymetry below

|

Hg

f:’f'x’;’Tﬁfﬁ

v
VAN NN

On the deep water Sde, the surface height field is compaosed of an incident
wave and possible reflected waves according to
h,=h, cosk(x - c4t) +h, cosk(x +c41)
a) What is¢y?

On the shallow water Sde, thereisa transmitted wave field on the shelf
h,=h, cosks(X - cst).
Atx =0, the wave height must be is continuous according to
h,(0,t)=h (o, 1)
and the volume transports are equal
uq (0, t) =us(0, 1)

b) Evauate both the reflection coefficient R = % and the transmission coefficient

=y

T=

=y

. _n? . h!
) What isthe energy reflection ratloh—r2 and energy transmission ratio—; .

d) Evduate the reflection and transmission coefficients for atypica shelf where Hy
= 4000 m and Hs = 100 m.
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Problem 7.7 Channd Tides

Solvefor freetidd wavesin a channd as shown baow

D | X =0 at one side

..... X = L at the other

The eguations of motion are (momentum and continuity)

TV veglh=0

qt I x

ﬂ—+fu +glh =0

fit ﬂy

‘ﬂh
+—UD+— D) =0
It ﬂx( ) Ty (VD) =

Assume ? of theform
h :h(x) Exp(i( by -wt))

a Solve the momentum equations for u and v to get
g

) 1 u
|u:— fb+W
W2'f2 XH

w’ f ng f‘ITXH

b. Then solve the continuity relationship to get a digperson reaionship of the form
gD(a’-b?) =w?-f°
C. Take as boundary conditions that norma component of the velocity vanishes at
the boundary, i.e,ax=0andx =L, i.e
[-f b +Wi]h =0
9 x
Get two casesfor red and imaginary a, identify them, and i). solvefor aand 3in
both cases, ii). solve for ¢ = ?/k in both cases.
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Problem 7.8 Wave For ce Balances

Oscillatory motion occurs when there is arestoring force acting on adisplaced
"particle’, (generaly proportiond to the displacement). Describe the restoring force for
such of these types of waves:

Inertid waves
Long surface gravity
Short surface gravity
Tides
Internal waves
Capillary waves
Indicate on a? versus k plot where each of these waves might be found. (What are the

range of wave numbers and angular frequencies for each?)
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Problem 7.9 Short Wave Reflection
Suppose you have deep water gravity waves impinging on the side of the ship. What

does the pattern of waves look like?
Lettheshipbeawdl atx=0

a A
kr
Reflected L~
waves
P
Ship
Fe
= X
P
Incident
waves -
[ o

The surface height field will be the sum of incident and reflected waves according to
h =h, coskx +/y-wt)+h cos(-k X+ /.Y-wt)

a) What are w , u(x,y,zt), v(x,y,z,t)?
b) Evduaew, , 7, h,, andk; for the condition of no flow through the side of the
shiporux=0,y,z 1t =0

) Describe the outgoing wave.
Hint Use w? =g[k?+RJY?
and

p=-r gz+r gh,cos(kx +(y-wt) g
+1 gh, cos(-k, + £y -w, ) el
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Problem 7.10 Surface Gravity Waves

Given amean depths of 13 mfor Narragansett Bay and 200m for the Gulf of Maine,
edimate the wavelength, period and speed for the:

Shortest shdlow water (or “long”) wave
Longest deep water (or “short”) wave

that propagate in both locations.

Problem 7.11 Tsunamis

An earthquake of the coast of Peru creates awave for which L >> 4km. Estimate how
long it takes for this wave to reach Japan
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