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CHAPTER 5B 

ELEMENTS OF DYNAMICAL OCEANOGRAPHY 
 

In the previous chapter we derived the following the continuity and conservation of 

momentum equations that are pertinent to the ocean, namely   
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The component form of the momentum equation, in which we have neglected the less 

important Coriolis terms, is  
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Now let’s consider approximations of the above set of equations that yield the essential 

physics of a suite of ocean processes of interest. The first approximation is to assume 

no flow acceleration. To assume a steady flow, i.e. 

0  
t

≡
∂
∂

 , 

where ≡ means “defined”, eliminates time-dependent accelerations. Hence there is no 
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pulsing of the flow. However convective accelerations of the steady flow (V )V•∇  are 

still possible. In many oceanic situations, these terms are small and can be neglected 

when compared to other terms in the equations. Thus for the following set of 

considerations, we will assume that(V )V » 1•∇
r r

 and 0  
t
v

≡
∂
∂
r

 so that we have 

equilibrium flows in which 

0  
dt
d

≡  . 

Therefore the component form of the momentum equations can be written as 

If we further assume that friction forces are negligible, then 

Hydrostatic Balance 
 

Recall that if we assume static conditions or no motion (i.e., 0  V ≡
r

), then the above 

three equations reduce to the hydrostatic balance – the force balance between the 

pressure gradient force and the water parcel weight per unit volume according to  
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We explored the implications of a hydrostatic ocean pressure field above, so that we 

will move on and consider the force balance that leads to horizontal geostrophic flow in 

the presence of an approximate or quasi- hydrostatic ocean. 

 

Geostrophic Balance 
One of the simpler force balances is between the pressure gradient and Coriolis forces 

CF, which is  illustrated in (Figure 5.21).  

 
Figure 5.21 The generalized Coriolis force (CF) on a water parcel with a speed V. 

 

The geostrophic force balance in Cartesian component form is  
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and leads to a condition known as geostrophic flow.   
 

The generalized form of the geostrophic balance, in a coordinate system aligned with the 
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water parcel flow vector, can be derived by squaring and summing the Cartesian 

components so that 

y
p + 

x
p = )u + v(f 
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2222
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ρ   , 

where |V|
r

is the magnitude of the total velocity and n is the coordinate perpendicular 

toV
r

with the sense shown in Figure 5.22a. 

Thus, in general, the pressure gradient force (PGF) and Coriolis force (CF) are 

balanced in the direction perpendicular to the flow vector... no matter what its direction 

(Figure 5.22b).  Because the Coriolis parameter f is of the opposite sign in the northern 

and southern hemisphere, the Coriolis force is to the left of the velocity direction in the 

southern hemisphere. 

 

Figure 5.22a Generalized geostrophic force balance for a water parcel. The Coriolis force Vfρ   

balances the pressure gradient force np δδ−  in the direction normal to the velocity 

jviuV += .  The Cartesian components of the velocity and pressure gradient are also shown. 
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Figure 5.22b Comparison of the generalized geostrophic force balances relative to the flow 
velocity vector in the northern and southern hemisphere respectively. Note generalized pressure 
distribution.  
 

Note that this geometry of the geostrophic flow situation ensures that the Coriolis force 

can never do any work on the water parcel (i.e.  0 = V  FC
rr

• ) and therefore can not 

initiate motion (i.e. change the kinetic energy)!  This realization is consistent with the 

fact that the Coriolis “force” is a pseudo force, (i.e., really only an acceleration).  Thus 

the flowV
r

must have been initiated by some other physical process like wind forcing – a 

process that we will explore later. However, once the water is moving for more than 

about a half day, the geostrophic relation above specifies the magnitude of the pressure 

gradient force required to maintain the force balance. Because geostrophic flow is 

strictly un-accelerated by assumption,, the curvature effects (or
r
V2ρ

) associated with 

the flow must be small compared to Coriolis effects  fVρ .  Thus strictly speaking 

geostrophic flow is horizontal straight-line or rectilinear ocean flow.   

Let’s explore the relation between the pressure field and the geostrophic flow. First of 

all, the hydrostatic condition of no flow and level isobaric surfaces is replaced by 

geostrophic flow and isobaric surfaces that are tilted relative to geopotential surfaces.  

How much tilt? To determine this, consider the picture in Figure 5.23, in which ß is 

positive counterclockwise.  The finite-difference form of the hydrostatic relation tells us 

that pressure difference pδ  over a distance nδ  is zgp δρδ =  .  Substituting this 

relation into the finite difference form of the geostrophic relation  
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and rearranging gives 

Since tanß = dz/dn, the relation for the tilt of the isobaric surface is  

 

 

Figure 5.23 Schematic of geostrophic flow on an isobaric surface tilted an angle ß relative to a 
geopotential surface. 
 

So given a geostrophic flow velocity, the isobaric tilt can be computed;  (Note that ß > 

0 in the northern hemisphere).  But what are the typical values of ß?  To estimate this, 

consider the tilt of the sea surface which is nearly an isobaric surface:  Assuming that f ~ 

10-4 rad/sec, g ~103 cm/sec2, and V ~ 100 cm/sec yields 510tan −=β  or a slope of 1 

cm/km.  Thus we find that, although isobaric surfaces are not exactly level, they are 

nearly so and because of that the hydrostatic condition is almost exact. 

Now assume the isobaric surface above is the ocean surface.  If the water column 

below the surface is homogeneous (i.e. 
θ

σ  = constant), then density ρ  is a function of 

pressure alone (i.e. )( pρρ = ).  Under this circumstance the isobars and isopycnals are 

parallel (Figure 5.24). 
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Therefore, since β tan
f
g

 = V everywhere, the geostrophic flow velocity V is depth-

independent.  Depth-independent flow structure is called barotropic flow.  This is 

specific example of geostrophic barotropic flow. 

 

However in general in the ocean, potential density (or 
θ

σ ) is not constant. Therefore 

( )pp ρ≠  and isobars and isopycnals are generally not parallel.  Nevertheless,  at each 

isobar β tan
f
g

 = V .  However, since isobar tilts vary with depth [i.e. ß = ß(z)], V = 

V(z) and we have a geostrophic flow  example of a depth-dependent flow that is 

generally called baroclinic flow.   

How is the change of velocity with depth or velocity shear, 
z
V

∂
∂

related to the density 

field? Consider a two layer system (Figure 5.25) in which the surface is level and the 

interface between the upper layer (with 1ρρ =  ) and lower layer (with 2ρρ =  > 1ρ ) is 

inclined at angle ß. 

 
 

 
 
 
 
Figure 5.24 The configuration of isobars and isopycnals in a homogeneous ocean geostrophic 
flow.  
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There is no horizontal PG in upper layer for z > z1!  However in the lower layer, the 
lateral pressure gradient is 

Thus the geostrophic velocity in lower layer is 

Geostrophic Frontal Flow: The Margules Equation 
 
Often the horizontal density gradients are relatively large, approximating a density 

discontinuity or “front”.  These are common in the atmosphere and the ocean as well. 

To explore such fronts, consider the model in Figure 5.26. 

 
 
 

 
 
 
Figure 5.25  A two layer ocean with reclined interface.  
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Your homework problem showed you that the lower layer pressure gradient in this 
situation is 

Since the lower layer geostrophic flow (normal to the section) V2 is fV  = 
n
p

22ρ
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The upper layer pressure gradient and geostrophic flow is 

Combining the upper and lower layer relations from above leads to 

which can be rewritten in terms of the interface angle according to 

 
 

 
Figure 5.26.  Configuration of a two-layer geostrophic flow system.  
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Thus, if the right hand quantities are known, then the frontal slope can be calculated.  

Again assuming that f ~ 10-4 rad/sec, g ~103 cm/sec2, and V1 = V2~ 100 cm/sec, it 

follows that 

yields typical slopes for oceanic density interfaces of 

and  

        5
1 10tan −=β  = 1 cm per km.  

Geostrophic Flow: Continuously Stratified Ocean 

For a more general oceanic situation, consider the geostrophic flow in the  smoothly-

varying  inhomogeneous ocean  in Figure 5.27. (Note the similarity to Figure 5.26). 

 

Figure 5.27 The geostrophic flow configuration of isobaric surfaces in an inhomogeneous fluid 
with AB thanlessis ρρ  . 
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Given what we have already learned about computing the geostrophic flow velocity 
from the geometry of the isobars, compute the difference in the velocities 

( 21 VVV −=δ ) flowing along the  p1 and  p2  isobaric surfaces respectively according to 

) tan- (tan 
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But the pressure difference between the two isobaric surfaces is always p2 - p1 and is 

related to the local water density via the hydrostatic relation; 
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Dividing through by Aρ  and substituting from above leads to the finite difference form 

for the velocity difference 
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For very small differences in the limit, the above relation becomes the more general 

differential relation   

called the Thermal Wind Relation by the Scandinavian meteorologists around 1900.  

The thermal wind relation shows how the positive vertical shear in the velocity V is 

proportional to a negative density gradient normal to the velocity.  Note in Figure 5.28 

how the isopycnals and isobars intersect in this baroclinic flow case. 

 

 

Computation of Geostrophic Velocities 

As indicated earlier, the local partial differentials
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measured.  However, the approximate geostrophic velocity vector can  be computed 

from scalar pressure measurements using the finite difference form of the geostrophic 
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Figure 5.28.  The relationships of pressure and density fields in the thermal wind – an example of a baroclinic 
geostrophic flow field in which v1 > v2. 
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relation. In fact , this procedure is used by  meteorologists to compute geostrophic 

winds.  The surface pressure maps, which you see in the newspaper or on the nightly 

TV news, are usually a series of high and low pressure cells like those idealized in 

Figure 5.29. 

Next the geostrophic and hydrostatic relations are used to explore the atmospheric 

pressure field. Assuming the following typical atmospheric variable values  

   V ~ 10 cm/sec   

~nδ  103 km = 108 cm 

  ρ ~ 10-3 gm/cm3 

     f ~ 10-4 sec-1 (mid-latitude) 

we estimate typical atmospheric pressure differences of  pδ  =  nfV δρ = 104 

dynes/cm2. Since p ~ 106 dynes/cm2 = 1 bar, the pressure difference to pressure ratio is 

p
|atmos = 0.01 .

p
δ

 

Since atmospheric pressures are relatively easy to measure accurately, they have been 

used for about a century to estimate geostrophic winds.  

 
 

 
 
 
Figure 5.29.  The sense of geostrophic winds associated with pressure “cells” composed of isobars.  
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The situation in the ocean is very different, since typical oceanic variable values are: 

    V ~ 10 cm/sec 

~nδ  100 km = 107 cm 

   ~ρ   1 gm/cm3  

 

Thus pδ  = 104 dynes/cm2 , and p = ρ gdh ~ 108 dynes/cm2 , and  

0.0001 = ocean|p/pδ   , 

which is very small; making it very difficult to make direct pressure measurements that 

are accurate enough to infer geostrophic flow.    Next we discuss how historically 

oceanographers have estimated geostrophic flow. 

Method of Dynamic Sections 

Oceanographers use a modified form of the “thermal wind” relation, with  

hydrographic station T and S data (Figure 5.29b), to compute geostophic flows.  

Figure 5.29b A hydrographic section off the Oregon coast. A hypothetical geostrophic flow 
profile is shown. 
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The procedure for estimating such oceanic geostrophic flow is known as the Method of 

Dynamic Sections and is based on the assumptions that ocean: 

1) flow is not accelerated; 

2) flow is frictionless; 

3) pressure field is quasi-hydrostatic; and 

4) T /S profile measurements are simultaneous (or synoptic). 

 

The goal of this method is to compute the spatially-averaged geostrophic flow normal to 

the section between pairs of hydrographic measurement stations A and B  at which 

hydrographic measurements were made (Figure 5.30).  You will notice that the 

geometry of the problem is defined in terms of a quantity called dynamic height , which 

 is defined as D = gz. The units of D, 







≡

gm
cmdyne-

  
sec
cm = [D]

2

2

 indicate that this 

quantity is a work per unit mass against gravity or a change in geopotential. 

 
 
 

 
 
Figure 5.30  The geostrophic flow-related pressure field described in terms of dynamic heights at 
stations A and B. V1 and V2 are the geostrophic flow components normal to this plane on the 
respective pressure p 1 and p2 surfaces.  
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More specifically, z(m)g  = meter) D(dynamic , 

where g = 9.8 ms-2 and  

1 dynamic meter = 5 dyne-cm
 • 10

gm
. 

Since gdzp ρ-  =/d , the change in dynamic height dD = g dz can be related to 

specific volume according to  

 

Substituting Equation (1) into the general form of the geostrophic relation   

yields 

where all the Ds are referenced to a specified geopotential  within the earth.  (Note that 

the use of dynamic height eliminates the problems introduced by the spatial changes of 

g).   

Now apply Eq. (3) to the velocities associated with isobars p1 and p2,  respectively (see 

Figure 5.30) and difference them according to  
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between observation stations A and B.  Thus in terms of absolute dynamic heights, Eq. 
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Algebraic manipulation of Eq. (5a) isolates station A and B information into separate 

terms according to  

 

Thus the velocity of difference V1 - V2  is proportional to the difference between [term 

(a)]  the station B dynamic height difference between intersections of isobars p1 and p2 

and [term (b)] the corresponding station A  dynamic height difference.   

 

To compute terms (a) and (b) from observations, integrate the differential form of the 

dynamic height    

upward from  D2 to D1  and  p2 to p1 respectively according to , 

Evaluate the integrals in which α STP  has been divided into its contributions from the 

standard ocean and specific volume anomaly according to  
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The left hand side of Eq. (8a) has been divided into (a) the standard ocean geopotential 

difference between the level isobars, (D1-D2)s (and thus can not contribute to any 

geostrophic flow ) and (b) the cumulative dynamic height anomaly between isobars p1 
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and p2 2/1D∆  or 

The latter contribution is responsible for the tilts in the isobars and hence the geostrophic 

flow departure from an exactly hydrostatic, motionless ocean.   

Thus Eq. (5b) becomes the Mohn, Sandstrom, Helland-Hansen (MSH)Relation 

where . dp  - = D
p

p

2/1

1

2

δ∫∆  

The MSH relation is used to compute geostrophic velocity differences between pairs of 

isobaric surfaces 1 and 2, bracketed by a pair of observation stations A and B. Figure 

5.31 shows graphically how the geometry of the dynamic height components is related 

to geostrophic flows V1 and V2 on their respective pressure surfaces. V1 and V2 are 

absolute geostrophic velocities relative to “level” isobar 3.? 
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Figure 5.31 Schematic of relation of the pressure field and dynamic topography for geostrophic 
flow. 
 
 
 
 

 
 
 
 
Figure 5.32 The cumulative dynamic height anomaly structure of four selected isobars (relative to 
the standard ocean pressure levels ) for a four station hydrographic section.   (Von Arx). 
 
 
The schematic in Figure 5.32 graphically shows the relationship between the dynamic 

height, D, dynamic height anomaly, D∆ , and the cumulative dynamic height 

anomaly, Dn
n

∆∑  and the standard ocean (S = 35%, T = 0NC) pressure intervals for a 

realistic oceanic situation.  Here we have assumed that the p4 isobar is a level of no 

motion, that is, it is “level” relative to a geopotential surface and thus no geostrophic 

flow exists at that level. 

 
Note that the assumption of a level of no motion permits the computation of absolute 

velocity at each level.  Otherwise only relative velocity can be computed.  Therefore 

this method is only useful in providing information about the baroclinic component of the 
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ocean flow.  It provides no information about the barotropic component of the ocean 

flow. 

 

An example of the application of this method to the Antarctic Circumpolar current - an 

essentially geostrophic current - is in Figure 5.33.  (The names suggest the importance 

of wind forcing to the flow.)  This baroclinic current is notable in that it is modest in 

amplitude but associated with the largest transports in the world’s ocean.   

 

 
Figure 5.33.  Southern Ocean surface circulation with mean positions of the Antarctic and 
subtropical convergences. The Cape Leeuwin, Australia, to the Antarctica hydrographic transect is 
indicated.  (a Pickard and Emery adaptation  from Deacon, “Discovery” Reports, by permission).  
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The lateral variation in the vertical shear in the geostrophic current is detailed in the 

Figure 5.34 comparison of pressure field and specific volume anomaly distributions.  

Note the transition from lowest flows near Australia to highest speed core in the central 

ocean to the more modest currents near Antarctica.  Also note depth to which the 

currents persist. 

 

Figure 5.34 (Lower) Distribution of the anomaly of specific volume 105δ  in a vertical section from 
Cape Leeuwin, Australia, to the Antarctic Continent (see Figure 5.33).  Upper:  Profiles of the 
isobaric surfaces relative to the 4000-decibar surface.  The corresponding geostrophic velocity is 
indicated. 
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The surface dynamic heights of the Atlantic Ocean relative to an assumed level of no 

motion at 4000 db are contoured on the Figure 5.35 map. The units of the dynamic 

topography are in dynamic-centimeters (dyn-cm).  In this case the surface dynamic 

topography is relative to the assumed level of no motion.  (Maps of dynamic 

topography can be produced for mid-depth pressure surfaces as well.) 
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Figure 5.35  Surface dynamic topography for the Atlantic Ocean (dyn.cm rel. 4000 db) (Tolmazin). 
 

In 1924, Wust used Gulf Stream temperature and salinity measurements (Figure 5.36a) 

with the Mohn, Sandstrom, Helland-Hansen relation to infer the geostrophic flow 

structure. The observed level of no motion was used in the Wust calculation. The 

similarity of the geostrophic current estimates to the direct current observations 

provided convincing evidence of the utility of the method of dynamic sections if a 
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realistic level of no motion could be determined.  

Figure 5.36a.  (left) Observed temperatures and salinities in the Straits of Florida, (right) 
Magnitudes of the current through the straits according to direct measurements and computations 
on the distributions of temperature and salinity.  [after Wust (19240 - From H.U. Sversdrup, M.W. 
Johnson, and R.H. Fleming, 1942, The Oceans, Their Physics, Chemistry, and General Biology, 
New York:  Prentice-Hall.] 

However until recently, simultaneous coincident current profile measurements were rare. 

Thus a variety of indirect methods for estimating the level of no motion have been tried 

over the years. For example, the surface dynamic height structure (relative to 2000db 

level of no motion in Figure 5.36b), based on other across-Gulf Stream T/S 

measurements (Iselin,1936) show where the maxima of the geostrophic surface flow of 

the Gulf stream would be found. Note the indication of a southward geostrophic flow 

(rel 2000db) east of the Gulf Stream. 
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Figure 5.36b.  The surface dynamic height determined using the MSH method and T/S 
measurements along of an across-Gulf Stream section  from the edge of the US continental shelf on 
the left to Bermuda on the right.  (in Knauss; after Iselin, C. O’D., 1936). 

 

Recently oceanographers have begun estimating surface geostrophic flow from the 

ocean surface topography measured directly with satellite radars (see Figure 5.37). 

Therefore absolute deep geostrophic current structure computed using the MSH 

relation can now be referenced to a “known” surface geostrophic current. 



 Chapter 5 B- pg. 70 
 

© 2004 Wendell S. Brown   8 November 2004                                                                                                          
                         

 

Figure 5.37 The SEASAT altimeter measured the distance between the satellite and the ocean 
surface (H). Sea level elevations/depressions relative to the geoid are typically less than ±20 cm but 
near western boundary currents like the Gulf Stream can be as mu ch as 1 m. 
 

The swiftly moving satellite uses accurate radar to measure the distance of the ocean 

surface (H) relative to its own position.  Then departures of the ocean surface from a 

“known” geoid can be estimated and used to compute surface geostrophic flow normal 

to the path of the satellite track as done for a  SEASAT altimeter transect across the 

Gulf Stream in 1978 shown in Figure 5.38.  One advantage of satellite altimetry is that it 

produces a truly synoptic measurement along its particular track. A companion 

disadvantage of satellite altimetry is that its area coverage is usually limited. Nevertheless 

the approximately 20 days it takes for a large scale satellite survey of the world’s 

oceans  is still far faster and less expensive than a comparable ship survey (even if the 

latter could be done). 
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Figure 5.38 Estimates of the surface geostrophic velocity along a  SEASAT altimetry transect 
crossing the Gulf Stream. The measurement noise seen in the 25km estimates in the lower panel is 
reduced by 100km alongtrack averging in the upper panel record.   (From Wunsch and Gaposchkin, 
1980). 
 

Perhaps more importantly - absolute geostrophic flows are inferred.  In contrast the 

shipboard method which always depends on assuming a level of no motion.  The major 

disadvantage of the satellite altimetry is that it provides no information on subsurface 

geostrophic flow.   
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Inertial Flow – A Case of Accelerated Circular Flow 

Consider the case where only the Coriolis “force” acts on a fluid parcel, with a 

j viu V
rrr

+= . The component form of the momentum equation, in this case, is  

      fv = 
dt
du

 

fu     - = 
dt
dv  

where the flow is accelerated. 

 

It can be shown (and you have the opportunity in Problem 5.9) that the parcel moves in 

a circle with a steady speed 22 = vuV + . For inertial motion, the Coriolis force acts 

on a water parcel alone, producing a uniform circular motion; clockwise only in the 

northern hemisphere and counterclockwise in the southern hemisphere. 

 
Figure 5.39a.  Balance of forces for the uniform circular motion of  inertial motion. 
 

Thus the dynamics of inertial motion can be thought of as a dynamic balance between 

two pseudo-forces, namely the Coriolis force (which symbolically here is fc) and the 

centrifugal force CF that is associated with the acceleration of circular motion (see 

(Figure 5.39a).  Thus the force balance (per unit volume) for inertial motion is 

CFVVf c ==
R

 = f
2

ρρ  
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so 

    
R

 = f
2VV  

and the radius of the circle is 

      
sin2

 =
φΩ

=
V

f
V

R  

 

Here the circular water parcel trajectory has a  radius R and period of the oscillation of  

which you will note is independent of  R! The inertial period T is one half of a 

pendulum day which is defined as. A pendulum day is the time it takes for the vertical 

plane, in which a pendulum swings, to rotate π2  radians or 360o relative to the earth at 

a  particular latitude (e.g.,  Foucoult’s pendulum).   

Examples – 

At the north pole  => 90 = °φ     f = 2 x (0.729 x 10-4 s-1) sin 90o 

     f= 1.458 x 10-4 s-1 

   s cm 10 = V -1   

     km 0.67 = cm 10 x 0.67 = 
10x1.5

10
 = R 5

4-
 

     hr 11.97 = T  

 

At    °30 = φ  s 10 x 0.729 = f -4  

   s cm 10 = V -1   

     km 1.37 = R  

     hr 23.94 = s 86189 = T  

   cms 10 = V -12  km 13.7 = R  

   
sin

 = 
f

2
 = 

R2
 = T

φ
πππ

ΩV
 , 
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Inertial motion is observed, particularly after the passage of storms with strong winds 

through a region.  Beginning in the 1960s, with the development of long-term moored 

current measurements (Figure 5.39b), physical oceanographers have discovered  strong 

evidence of inertial motion in current meter time series  (Figure 5.39c). One method for 

displaying the contributions of inertial motion is to plot patterns of flow displacement 

past the current meter in a form called a progressive vector diagram (PVD, Figure 

5.39d).  

 

 

Figure 5.39b Moored array of current meters   (Neumann & Pierson) 



 Chapter 5 B- pg. 75 
 

© 2004 Wendell S. Brown   8 November 2004                                                                                                          
                         

 

 
Figure 5.39c A 7-day time series of the eastward (E; dashed) and northward (N; solid) measured 
currents in August (VIII),  indicating strong circular inertial motion.   (Neumann & Pierson) 

 

 
Figure  5.39d  A 7-day progressive vector diagram of moored current measurements time series, 
clearly indicating strong circular inertial motion superposed on a larger scale northwestward flow. 
(Neumann & Pierson) 
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Cyclostrophic Motion: Another Case of Accelerated Flow 

 
Consider the case of cyclostrophic motion, where earth rotation effects are unimportant 

and yet water parcels undergo small-scale (order 100m) uniform circular motion 

(accelerated - like the inertial flow case above) under the influence of lateral pressure 

gradients. The component form of the momentum equation, in which we have 

neglected the less important Coriolis terms, is  

     
x
p

 
1

 - = 
dt
du

∂
∂

ρ
 

    
y
p

 
1

 - = 
dt
dv

∂
∂

ρ
 

Thus the force balance for cyclostrophic motion can be thought of as is between the 

centrifugal force (CF) associated with the relevant uniform rotation rate ? of the fluid 

and the generalized pressure gradient force (gradh p). The balance between the 

horizontal pressure gradient force (gradh p) and centrifugal force (CF) for rotation in 

either direction is: 

gradh p = CF
r

V
r
p

n
p m ==

∂
∂

∂
∂ 2

 = ρ  , 

where raterotationfluidtheisrVm ωω ,= ,  and  r is the radius of curvature of 

the flow. Thus the above becomes 

     
r

V
n
p m

2

 =
1

∂
∂

ρ
 

r
n
p 2 =

1
ω

ρ ∂
∂
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Figure 5.40  Balance of forces in cyclostrophic flow.   
 

Meander Flow: Still Another Case of Accelerated Flow 

Meander flow is a dynamic departure from classical geostrophic flow, in that the latter is 

rectilinear (i.e., straight-line flow); consistent with our original assumption of 

unaccelerated flow (with no curvature).  There is significant curvature in meander 

flow, so the component form of the relevant momentum equation is  

     
x
p

 
1

 - fv = 
dt
du

∂
∂

ρ
 

    
y
p

 
1

 -fu - = 
dt
dv

∂
∂

ρ
 

Thus the dynamics of meander flow can be thought of as a force balance between the 

lateral pressure gradient force, the Coriolis and the centrifugal force according to  

    
r

V  fV = 
p

 
1 2

m
m ±

∂
∂

nρ
 , 

where r is the radius of curvature of the flow.  The choice between signs depends upon 

the flow direction. 

For cyclonic flow (in the sense of f), such as that found in a cold core ring (right Figure 
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5.41a), the Coriolis and centrifugal forces add (see upper right Figure 5.41b). Therefore 

. 
n
p

 
r

 + )
2
rf

(  
2
rf

 - = V
2

m ∂
∂

±
ρ

 

 

Figure 5.41a.  Northern Hemisphere structure of (left) warm-core, anticyclonic eddies (right) cold 
core ring structure. 
 

 
Figure 5.41b  Four possible force balances for meander flow Vm = c m (Von Arx). 

Since 0,  
h
p

 as 0,  Vm →
∂
∂

→  we choose the positive solution, i.e. 
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n
p

 
r

 + )
2
rf

( + 
2
rf

 - = V
2

m ∂
∂

ρ
 

For the anticyclonic flow, such as that found in a warm core ring, the centrifugal force 

adds to pressure gradient force.  Therefore 

. 0 = 
n
p

 
r

 + V rf - V m
2
m

∂
∂

ρ
 

Solving yields 

n
p

 
r

 - 
2
rf

( _+ 
2
rf

 = V
2

m ∂
∂

ρ
 

As above, there is no motion for zero pressure gradient, i.e. 0.  
n
p

   as   0  Vm →
∂
∂

→  

Thus the minus sign is the proper one. 

Presumably  
4
fr  

n
p

 
r 22

≤
∂
∂

ρ
 

   
4

rf  
n
p 2ρ

≤
∂
∂

 

i.e. pressure gradient force < Coriolis force. In fact, for small r in atmospheric flow - 

pressure gradients are weak (calm conditions). 

FRICTION EFFECTS 
Frictional effects on ocean currents are usually confined to regions near the boundaries. 

 The wind is coupled to the surface layer of the ocean through frictional effects in a near 

surface layer.  Near the bottom friction slows the flow above it.  In the former case 

momentum is added to the flow and in the latter case momentum is extracted.  So it is 

not surprising that velocity profiles like the one in Figure 5.42 are related to stress, t. 
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In fact on a molecular scale x-directed horizontal stress is proportional via a coefficient 

of dynamic viscosity to the vertical gradient of eastward flow according to 

The units of stress are force per unit area 

which can also be expressed as a momentum flux; 

Thus stress is this case t zx is a measure of the transport of x-directed momentum in the z 

direction per unit area per unit time. 

The dynamic viscosity (with units
LT
M

 = ][µ ) depends upon the molecular properties of 

the fluid.  A related quantity, known as the molecular kinematic viscosity   ν , is 

defined as 

  = 
ρ
µ

ν  

with units 

 
 
 
 

 
 
 
Figure 5.42.  Typical boundary layer air flow near a solid (or watery)  horizontal boundary.  

 .
z
u

  = zx
∂
∂

µτ  
 

 
L

TML/
 = ][

2
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τ  
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ML/T
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A typical values of   ν for water is  0.02 cm2/sec.   

As it turns out viscous (or friction) effects that arise in the presence of turbulent flow 

are much more important than molecular viscous effects.  We can explore this form of 

friction by first defining what is meant by turbulent flow. 

First we assume that a general flow can be divided into a mean and fluctuating part.  

The temporal average of a time series of a current component u is u (Figure 5.43).  If u 

is subtracted from the total velocity, then the fluctuating part, u' remains. 

  

Figure 5.43. The total time-varying eastward flow u(t)  is partitioned into its time-averaged 

component   u and its fluctuating component u'. 

Thus we can express the total velocity vector as ' +  = V VV
r

 , 

where 

k  +   + i  =
rr

wjvuV  

and  

k w +  v + i u ='
rr

′′′ jV  

One way of understanding how a stress arises in a flow with turbulence is to explore the 

momentum transport in such a flow.  Given a temporal mean velocity profile (Figure 

5.44).  Consider what happens when a fluid parcel at level zo is displaced upwards by a 

 
2L[ ] = [ ] =  

T
µ

ν
ρ
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velocity fluctuation + w' to a level z1, where )()( 1 ozuzu ≥ .   

 

     
Figure 5.44.  Reynolds stress in a turbulent velocity field with a mean profile as shown. 

Initially at its new level, the parcel retains its original velocity )( ozu , which slower than 

the surrounding fluid at that level. Because the newly displaced parcel is lagging the flow 

at z1,  a  + x-directed drag force or stress is applied to the parcel until it is accelerated 

to the velocity of the surrounding flow. The relation of the induced drag, the + w' 

perturbation , and the horizontal velocity perturbation -u' = )()( oo zuzu − in the flow at 

z1, is shown in Figure 5.45 

 
      
Figure 5.45.  Relation of mean and turbulent flow in a shear flow. 
 
 

 

The time average of many of these random turbulent transport events produces a 

stress Szx in the fluid called the Reynold’s stress that is given according to  

wu- = Szx ′′ρ  

where the overbar .....  refers to the time-averaging process. Reynolds stress is 

equivalent to the turbulent flux of momentum. However it is rare that we are able to 

measure the turbulent velocity components. There fore, by analogy to molecular  stress, 

we relate Szx to the measurable mean velocity gradient with 



 Chapter 5 B- pg. 83 
 

© 2004 Wendell S. Brown   8 November 2004                                                                                                          
                         

where Az
e is an eddy dynamic viscosity and  ρν / e

z
e
z A=  is the eddy kinematic 

viscosity .  In contrast to molecular kinematic viscosityν  (which is virtually constant),  

 ee Aandν  depends upon flow conditions. Thus eddy viscosity varies in the different 

component directions because the flow properties vary in the different directions.   

Typical values of the vertical kinematic eddy viscosity e
zν range between 2 and 104 

cm2/sec.  Corresponding values of lateral kinematic eddy viscosity e
Hν  , (or e

xν  and e
yν ) 

are generally larger because both the “thinness” and the stratification of the ocean inhibit 

vertical momentum transport relative to horizontal momentum transport.  Values of e
Hν  

vary between 10 and 108 cm2/sec. 

Since eddy viscosity is so much more effective than molecular viscosity in transporting 

momentum (i.e. ocean frictional processes),  we will use only eddy viscosities A andν , 

unless stated otherwise.  Although unjustified in many cases, we will further assume that 

the eddy coefficients A and ν are constant in space and time.  In terms of this new 

formulation, the friction terms in the momentum equations become  

2 2 2
h z

22 2

2 2 2
h z

22 2

2 2 2
h z

22 2

u uuA Ax-direction                    (  + ) +  ( ) 
yx z

v v VA Ay-direction                    (  + ) +  ( ) 
yx z

w w wA Aand z-direction              (  + ) +  ( ) 
yx z

ρ ρ

ρ ρ

ρ ρ

∂∂ ∂
∂ ∂∂

∂ ∂ ∂
∂ ∂∂

∂ ∂ ∂
∂ ∂∂

 

 

                 . 
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u

 A = S e
zzx
∂
∂

 or                . 
z
u

  = /S e
zzx

∂
∂
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WIND STRESS ON THE SEA SURFACE 
 
The winds in an atmospheric boundary layer are turbulent.  A conceptual model of the 

turbulent boundary layer wind field consists of a mean wind that horizontally transports 

or advects an array of multi-sized eddies. The average or mean winds in this turbulent 

atmospheric boundary layer increase from near zero at the sea surface to its full 

geostrophic value at elevation  as shown in Figure 5.45.  

We seek to determine the horizontal stress on the sea surface sτ as a function of the 

wind velocity at an elevation of 15 m or W15. Since the dimensions of wind stress 

[ ] 22 / LMLT −=τ , [ ] 3−= MLρ , and  [W15] = L/T respectively, we can surmise that 

W const  = 2
15aρτ . 

The following elaboration shows that the above “const” is 2.6 x 10-3, so that the 

following empirical relation  

W  10 2.6 = 2
15a

-3 ρτ xS   

for estimating sea surface wind stress with just a wind measurement at 15m elevation.  

 

Figure 5.45 The boundary layer average or mean wind profile near an ocean/atmosphere 
boundary.  The reference level for estimating the wind stress at the sea surface is indicated. 

 

 

................................................................................................. 
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To derive this empirical relation for sea surface stress estimation, we first define a 

friction velocity   u* in terms of the stress according to 

2*uas ρτ =  

 

 

Second we determine u* in terms of W15 as follows. 

 

Let l be the characteristic size of these eddies, which are carried downstream at a 

speed u(z) that depends upon their elevation.  On the other hand, these eddies can 

sense the changes of velocity over their own diameter, . 
dz
du

 =u lδ , which we assume 

is  proportional to u* according to  

oku /*. =u δ  

where ko is the empirically-determined  “von Karmen” constant. 
 

 

What length scales exist for l?  The most obvious one is the height from the surface z.  

Therefore, if eddies have a scale zo at the surface itself [in this case, zo is a roughness 

length associated with the surface wave field, Figure 5.46], then the eddy scale at height 

z is  

l = z + zo. 

Substituting for l and assuming that the eddy velocity uδ also scales with the friction 

velocity u* according to  

    
*

o
o

d u uu =  (z + ) =  z
dz k

δ   

or   

 
*

o o

d u 1 u =   
dz (z + )k z

 , 
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Figure 5.46.  Flow eddies associated with surface roughness. 
 

Vertical integration of the above or 

yields the mean wind profile according to  
 

    )
z

zz+
ln( 

k
u =  (z)u

o

o

o

*

. 

 
Solving the above for u* gives 
 

       
)

z
zz+

ln(

uk = u

o

o

o* , 

which upon substitution into  
2*uaρτ =  

gives the general relation for stress 

})
z

zz+
{ln(

k )(  = 
2

o

o

2
o2

a zus ρτ  . 

The sea surface stress, based on the 15m mean wind W15, is then given by 

 

])
z

z+1500
[ln(

k W  = 
2

o

2
o2

15a
o

s ρτ  

Experimentally ko and zo are found to be 0.4 and 0.6 cm respectively, so wind stress at 

the sea surface is 

  zd 
)z+z(k

u  = (z)u
oo

*z

0

′
′∫  
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W  10 2.6 = 2
15a

-3 ρτ xS  

Now we are ready to explore the effects of wind stress on the sea surface. 

Ekman Flow 
 
In 1893, Fridtjof Nansen and the R/V Fram were locked in the ice during their 

expedition to the Arctic. Nansen’s data showed that the Fram drifted about 20o 

documented the to the right of the local wind direction. Upon his return in 1896, he 

assigned the task of deriving a theoretical explaining of this observation to a graduate 

student named Vagn Ekman.  In 1905,  Ekman published the following theory of “wind-

drift”  ocean currents. 

  

The direct effects of wind stress on the sea surface are confined to a relatively thin 

boundary layer in the upper ocean.  We can explore these effects by considering 

simplified versions of the horizontal momentum equations 

     F + 
x
p

 
1

 - fv = 
dt
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x
f
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    F + 
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 -fu - = 
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y
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First, we assume that lateral friction is negligible and that Az and zν  are independent of 

z, giving 

     
z
u

  + fv
2

2

z ∂
∂= ν

dt
du

 

 
z
v

  +fu -
2

2

z ∂
∂= ν

dt
dv  

If we further assume that we have equilibrium flow and that the horizontal component of 
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 0≡∇p , then the force balance below results. 

The solution to these equations, assuming the application of a surface wind 

stress j  = ss

rr
ττ  (northward) is called Ekman flow or 

)
4

(cos/

D
z

eVu Dz
o

E πππ +=  

)
4

(sin/

D
z

eVv Dz
o

E πππ +=  , 

where the surface velocity 
ν
ρτ

f z

s
o

/
 V  and the Ekman depth . 

2
  = D z

f
νπ  This form 

(Figure 5.47) of Ekman Flow has not been verified experimentally.  Perhaps because of 

our assumption that Az ( zν ) is constant with depth. 
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Figure 5.47 Water movements in a wind-generated current in the Northern Hemisphere.  
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However, if we integrate the solution above from very deep (i.e. z = -  ∞ ) to the 

surface.  We find that the Ekman Transport is 

Thus the net transport in the Ekman Layer is to the right of the wind in the northern 

hemisphere.  This result has been verified experimentally.  Interestingly the Ekman 

transport is not dependent upon the value of the eddy coefficient of viscosity Az. 

What are typical depths of the Ekman Layer?  At mid-latitudes,  

10m<D<400m 

depending upon Az. 

 

The effects of Ekman transport are particularly evident along the western coasts of 

North American continents because they are poleward prevailing winds during certain 

times of the year.  These poleward winds lead to offshore transport in the Ekman layer 

(Figure 5.48).  Because of the presence of the coast this water is replaced by nutrient 

richer water from below the photic zone.  Under the proper conditions this leads to 

higher biological productivity.  Other oceanic and meteorological conditions at great 

distances from the coastal upwelling region can also influence the productivity of this 

region as we will see later. 
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Figure 5.48.  Wind-induced coastal upwelling and downwelling in the Northern Hemisphere.  The 
slopes of the sea surface and thermocline are greatly exaggerated.  The arrows show direction of 
water movement. 
 

VORTICITY 
In our discussions of the Coriolis “force”, geostrophy, and Ekman Flow the effects of 

the earth’s rotation on oceanic flow has been shown.  This tendency of ocean flow to 

turn relative to an observer fixed to the earth can be discussed more clearly in terms of a 

quantity called vorticity:  the tendency of water parcels to circulate around a vertical or 
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nearly vertical axis.   

Physically, the vorticity is generally defined in terms of the circulation Γ  (a scalar) 

around a line S that encloses an area A, according to the line integral 

sdV
s

⋅Γ ∫   =  , 

where  V is the flow velocity and sd  is the unit vector locally tangent to the enclosing 

line S (see Figure 5.49). The units of circulation are[ ] TL2 = Γ . 

Here we consider only the velocity in the horizontal plane ),( yxV so that the 

corresponding vertical component of the vorticity (a vector) is  

A
 =  

Γ
ς  

for which, by convention, counter-clockwise (CCW) rotation is positive upward. 
  

  
Figure 5.49  The definition of  circulation in a  horizontal plane.  

 

Mathematically, the vertical component of the vorticity can be written in terms of 

horizontal velocity gradients according to  

 
y
u

 - 
x
v

 = 
∂
∂

∂
∂

ζ  . 

This relation emphasizes the fact that flow need not be curved (or circular) in order to 
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have vorticity.  In particular, Figure 5.50 shows the evolution of marked fluid parcel in a 

flow with positive shear yu ∂∂ .  The marking indicates that the water parcel is both 

advected  downstream and  distorted.  The  distortion -  a twist – indicates that the 

flow field has negative vorticity or  ζ− .  

 

Figure 5.50 An eastward flow with northward shear advects and distorts fluid parcels , producing a 
combination of  translation and negative relative vorticity.   
 

Similarly, Figure 5.51 shows that a flow field , with a positive shear xv ∂∂ ,  is the 
combination of translation and  positive vorticity or  ζ+ .  

 
Figure 5.51 A northward flow with eastward shear advects and distorts fluid parcels , producing a 
combination of translation and positive relative vorticity.  
 

 

Since vorticity is related to the rotational characteristics of the flow it is sometimes 

convenient to express our definition of vorticity in terms of polar coordinates (see 

Figure 5.52).  Here the Cartesian x and y axes are replaced by the radial r and 
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azimuthal  θ axes.  The azimuthal velocity V, which is normal (or perpendicular) to the 

radial (r-) direction, may vary with r - the distance from the center of curvature. 

 

 
Figure 5.52 Polar coordinate system with r, θ , and z coordinates in the directions of the respective 

unit vectors;  radial ri , azimuthal θi and upward k . 

 

In this coordinate system, the vertical vorticity - defined as 

    = 
r
V

r
V

∂
∂

+ζ  

      (a)   (b) 

has two contributions; one due to  the  (term a) angular velocity of the fluid as it bends 

through radius r;  and  (term b) the azimuthal current shear. 

Consider the vorticity implications of the following two “flow” cases.  

 

Irrotational Flow  

      The azimuthal flow in Figure 5.53a is irrotational because the “marker” lines on the 
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fluid parcels do not change orientation as they are advected in the flow.  The 

vorticity for irrotational flow  is zero by  definition;  i.e. 0 ≡ζ  .  

 

 

 

 

Figure 5.53a Irrotational circular flow - note the orientation of the marked fluid parcels  – consists 
of a balance between angular velocity with a magnitude rV and a negative  shear.. 

 

Thus the two terms in the vorticity definition must balance everywhere according to  

 

    =0
r
V

r
V

∂
∂

+  . 
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      (a)   (b) 
 

Since the curvature term (a) =V/r is positive definite, the shear term (b) must be 

negative. The latter means that the azimuthal velocity magnitude must decrease 

according to  

r
V

−=
∂
∂

r
V

. 

 

Solid Rotational Flow  

Consider a resting fluid on a turntable with a rotation rate kωω +=  in Figure 

5.53b. As seen by an outside observer, the fluid has a “solid body” azimuthal 

velocity field defined by the vector cross-product  rxV ω=  (unfamiliar???;  

see Appendix A).  The magnitude of the “flow” velocity is rV  ω= .  

  

 

Figure 5.53b Solid-body rotary flow has an azimuthal flow magnitude rV  ω= . Note the 
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orientation  of the marked fluid parcels. 

What is the vertical vorticity of this flow? 

Under these conditions the curvature term (a) is V/r =  ω  ; and  the shear term 
(b) is  ω = rV ∂∂ ; so  the vorticity is  

ως 2 =  ; 

or twice the angular rotation rate of the fluid.  

 

Conservation of Oceanic Vorticity on the Earth  

A resting fluid on the Earth will be in solid body rotation and will have a well-defined 

vorticity relative to an inertial frame of reference. We call this planetary vorticity, 

which is 2 times the local overhead rotation rate, or f = φsin2Ω !  For example, the 

planetary vorticity of a fluid column at the pole is f = Ω2 ; at 30NN  f = O, and at the 

equator f = 0.   

However a fluid moving relative to the Earth could have an additional component of 

vorticity relative to the Earth - called relative vorticity  ζ .  The sum of planetary and 

relative vorticity is called the absolute vorticity (AV) or  

ζ + f = AV  , 

relative to an inertial frame of reference . 

The ratio of absolute vorticity and the height of the water column H on a rotating Earth  

is called  the potential vorticity (PV) according to 

PV )
H

f+
( =

ζ
 . 

It can be shown that under many important circumstances, the PV of a frictionless fluid 

column is conserved along the trajectory according to  

0 = )
H

f+
( 

dt
d ζ

 

or  

PV = tcons tan
H

f+
=

ζ
. 
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Consider the implications of the conservation of PV for the following simple cases. 

 

Case I:  Figure 5.54 shows the qualitative effects of stretching and shrinking (or 

squashing) a frictionless water column in an f = constant environment.  

  

 
Figure 5.54.  Relative vorticity change due to water column stretching. 

 

Quantitatively (and symbolically), determine the amount and sign of the relative 

vorticity  ζ that is produced, due to shrinking and/or stretching of the water column, 

with f = fo = a constant. 

      For stretching: Determine  ζ after an initially motion-free (  ζ = 0) fluid column is 

stretched to height H1 > Ho, where Ho is the fluid column height at  

t = 0?    

To start, you know that PV conservation demands that 

H
f+ ζ

= constant 



 Chapter 5 B- pg. 98 
 

© 2004 Wendell S. Brown   8 November 2004                                                                                                          
                         

following a water column for all time.  

Thus at t = 0, the constant is  

constant = fo / Ho . 

At some future time t = t1, PV conservation demands that  

oo
o Hf /
H
+f

1

1 =
ζ

. 

Thus   

)1( 1
1 −=

o
o H

H
fς  

For a homework exercize determine the corresponding PV change for water column 

shrinkage. 

 
Case II:   Figure 5.55 shows qualitatively that positive  ζ is produced when a constant 

depth, frictionless water column is displaced from a poleward latitude to an 

equatorward latitude due to changes in f ....and visa versa.  

 

 

Figure 5.55  Relative vorticity change due to meridional motion.  
 
Determine the quantitative  ζ changes (symbolically) that are illustrated in Figure 5.55). 

Use the approach illustrated in the Case I analysis above. 
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Case III:  Figure 5.56 shows qualitatively that for a situation in which changes in relative 

vorticity are not allowed (i.e.,  ζ production is zero), equatorward movement produces 

water column height H decreases and visa versa. 

 

 

Figure 5.56  Water column stretching due to meridional motion with 
d

  0
dt

.
ζ

≡ For zero relative 

Show how PV conservation produces the  ζ changes illustrated in Figure 5.56). Use 

the approach illustrated in the Cases I and II analysis above. 

 

In this chapter, we have introduced the basic dynamic elements relevant to 

understanding ocean circulation. In Chapter 6, we will use many of the concepts 

presented in this chapter to explain the dynamics underlying wind-driven and 

thermohaline ocean circulation.  
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CHAPTER 5B   PROBLEMS 

Problem 5.6 

Geostrophic Flow - Gulf Stream 

 
a) The Gulf Stream flow near the surface is northward at 200 cm/sec (see diagram 

below).   

• Assuming a latitude φ = 30°N, what pressure gradient is required to 

geostrophically balance this flow?    (recall that dimensions of pressure 

gradient are dynes/cm2-cm). 

• Given a 50 km-wide Gulf Stream of uniform flow, what is the pressure 

difference across the stream in dynes/cm2?.....in decibars?  This 

corresponds to how many meters (or centimeters) of excess water 

height? 

b) Which side of the stream is higher pressure, east or west? 

  

 ( )secv cm  

50 km 
0 

200 

100 
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Problem 5.7 Water Column Dynamic Height   
The diagram below shows two 2-layer water columns with different sigma-thetas.  
Calculate the dynamic height of the surface relative to 2000 decibars (in dynamic 
meters) for each water column.   
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Problem 5.8 Dynamic Height Computations 

You are given the following specific volume anomaly data for two stations: 
 
 
 Station 1 P(db)   510×δ  
                          (decibars)       )/( 3 gmcm  
 
 0 350 
 50 300 
 100 250 
 200 150 
 500 100 
 1000 75 
 1500 50 
 2000 40 

 
 
 Station 2             P                   510×δ  
                     (decibars)         )/( 3 gmcm  
 
 0 650 
 50 600 
 100 550 
 200 400 
 500 200 
 1000 105 
 1500 60 
 2000 50 
 

  
(a) For the two stations calculate the dynamic height anomaly difference ∆Dp-1500  

at pressures p = 0, 50, 100, 200, 500, 1000, 1500, 2000 db, according to 

Hint: Try using the following trapezoidal rule approximation for an integral 
 

{ [ ] [ ] ...)x(x )f(x)f(x2/1)x(x )(x)f(x2/1)( 23321221
1

0
+−++−+=∑∫ fdxxf

nx

      [ ] })x(x )f(x)f(x2/1 1nnn1n −− −++  

(b) Assuming Station 2 is 100 km directly east of Station 1, and that f = 10-4 sec-1 , 
calculate the geostrophic velocity (at each of the levels) relative to the 1500 db 
velocity using 

    What can be said about the eastward velocity component? 

 ∫=∆ − 1500

p

1500 d(p)    Dp  dp 

 dxd?D)/1(v(1500)v(p) 1500p−=− f    
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Problem 5.9   Dynamics of Inertial Motion 
(a) Consider the movement of a solid sphere (mass = m) on a frictionless, rotating 

plane, with a constant Coriolis parameter = f.  
  
 If the sphere is given an initial northward velocity vo at an initial time (t = 0), 

then at time = t : 
• how far north has the sphere moved?   
• what is the zonal (east-west) velocity?   
• how far east (or west) has the sphere moved? 
 

       Hint: To answer the questions, you must set-up and solve the relevant 
differential equation for the motion (i.e., position, velocity and 
acceleration) of the sphere. To do so, consider a sphere in the figure 
below,with a vector j viu V

rrr
+=  being acted upon by the Coriolis force 

 = jmfu i mfvFc

vrr
−= , where dt

dy
dt

dx ==   vand  u . 

 

     

      

     

 

 
 (b) Assuming an initial northward velocity of vo = 200 cm/sec, t = 5 days, m = 1 

gm, and  f = 10-4 sec-1, what are the numerical values for the answers in part 
(a) ? Do your answers make sense? 

 
(c) What are the periods (hours) and radii (meters) of the inertial circles of particles 

with respective speeds and latitudes of: 
• 100 cm s-1   at 10° N latitude? 
• 1 cm s-1   at 45° N latitude? 

 

 y  

x 
mf|v| 

v
r
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Problem 5.10 Earth Rotational Effects 

Below are three different scenarios, in which earth rotation has an effect on the motion 

being considered. Answer the questions  

 
A. In 1913, A.H. Compton built a large doughnut-shaped glass tube and filled it 

with an aqueous suspension of oil droplets to measure the local vorticity of the 

earth.  If the contents of the tube were allowed to come to rest at latitude 30°, 

then 

 (1) What would be the angular velocity of the fluid after the glass 

doughnut had been very carefully overturned in its mountings?   

 (2) What would the angular velocity of the fluid be if the tube were 

quickly and carefully transported from rest at the equator to rest at the 

North Pole (with proper precautions having been taken to prevent 

freezing)? 

 
B. For demonstration purposes, the North Pole and Southern Railway Company 

maintains a frictionless flat car on which is mounted a large and massive 

frictionless horizontal turntable.  The car is frequently left on the ninetieth 

meridian line in the United States, for college students to push.  Some students 

push the car northward without touching the turntable; others spin the turntable 

without disturbing the car.  What surprising events ensue in each case? 

 
C. Certain coastal regions of the earth have high biological productivity because of 

upwelling.  If this upwelling is supported by the wind, in what direction must the 

prevailing winds blow on the east coasts and west coasts of the continents in the 

Northern and Southern Hemispheres, respectively? 

 
 
 
 
 
 Problem 5.11    Fluid Acceleration 
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 A velocity field may be defined as follows: 
 
u (x,y,z,t)  = 5t2 + 3x + 2y 
v (x,y,z,t)  = 0 
w(x,y,z,t)  = 0 
 
(a) Compute an expression for the total derivative of the above velocity field.  
                Show all work. 
 
(b) Compute the total derivative of the velocity field at t = 2, x = 3, and y = 3.    
                 Show all work. 
 
(c) What is the ratio of the “local” acceleration to the “advective” accelerations? 
 
 
Problem 5.12   Gulf Stream Slope 
     
A typical change in the sea surface height across the Gulf Stream is approximately 1 m. 

Given that the Gulf Stream is approximately 100 km in width, what is a typical sea 

surface slope (in degrees please!) across the Gulf Stream. Draw a diagram as part of 

your answer and show all work. 

 

Problem 5.13  Pressure Gradients: Hurricane-Induced 
 
An approaching hurricane causes a uniform, 4-m sea level rise along a north-south 

oriented coastline relative to a point located 100-km directly offshore at the edge of the 

continental shelf. Based on this information: 

 

(a) What is the direction of the pressure gradient due to the hurricane? What is the 

direction of the pressure-gradient force due to the hurricane? Use a diagram and show 

your chosen coordinate system.  

 

(b) What is the magnitude of the pressure gradient force caused by the hurricane “storm 

surge” just off the beach relative to the point located 100-km directly offshore at the 

edge of the continental shelf where the sea level rise due to the hurricane is 0 m? Show 

all work and use a diagram to help show your answer. 
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Problem 5.14  Pressure Gradients: Brazil Current 

 
Given that the Brazil Current (located off the east coast of South America) has surface 

velocities on the order of 65 cm/s (about half that of the Gulf Stream!) and an average 

width of ~100 km: 

 
(a) Estimate the magnitude and direction of the sea surface slope across the Brazil   Current. 
 
(b) Draw a diagram to help show your answer. 
 
 
 Problem 5.15  Ekman  Flow 
 
(a) Off the coast of Rhode Island a 4-knot wind blows from the west.  

 (1) What is the speed of the surface wind-generated Ekman current? 

 (2) To what depth does the surface Ekman current extend? 

(b) Plot Ekman depth DE versus φ (latitude!) from 10° N - 50° N for wind speeds of  

5, 10 and 20 m s-1 wind speeds. Put all three plots on the same graph. What do the 

graphs show you? 

(c) During much of the year, a steady wind blows from the south along the “scenic” 

northern New Jersey coast which is oriented north-south at 40° N. Assume Ekman 

motion and ρ = 1.0 g cm-3. 

(1) If the wind generates a surface stress of 2 dynes cm-2, what is the Ekman 

transport along a 1-km stretch of the beach? 

(2) If the average width of the continental shelf in this region is 40 km, what 

would be the magnitude and direction of the vertical velocity of upwelling 

induced by the Ekman flow over the shelf? Assume that the upwelling 

velocity is constant over the entire shelf. 

 

 

 

Problem 5.16   Ocean Currents 

 

Long-term current meter measurements located on the continental shelf south of Nova 
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Scotia show that average near-surface currents are westward at 20 cm/s. 

 

(a) Calculate the alongshore (parallel to shore) and cross-shore (perpendicular to shore) 

components of this current taking into account the fact that the Nova Scotia 

coastline is oriented along a 65 degrees True compass heading. Make sure to define 

and sketch your coordinate systems and velocities. Show all work. 

 

(b) A Canadian Coast Guard search and rescue team is searching for a fishing vessel 

which went down 100 km off the coast of Nova Scotia in the same area described 

above. Based on the average current velocity in the region how far along the coast 

and perpendicular to the coast should the search team look for survivors 24 hours 

after the vessel has sunk? Show all work. 

 



 Chapter 5 B- pg. 108 
 

© 2004 Wendell S. Brown   8 November 2004                                                                                                          
                         

Problem 5.17  Ocean Expedition Design 

You are chief scientist for a physical oceanographic cruise scheduled for the month of 

November. A satellite-derived sea surface temperature image shows the exact location 

of a circular, 100-km diameter Gulf Stream warm-core ring (WCR) which has 

separated from the north side of the Gulf Stream south of New England. The northern 

edge of the WCR is located 100-km due south of Nantucket Island. Assuming you sail 

from Nantucket (where you maintain your own private research institution), your 

mission is to survey the WCR using the R/V Sasquatch. Your overall goal is to 

determine the temperature, salinity, density, and current velocity structure of the WCR 

relative to surrounding slope waters. 

 
Assume the R/V Sasquatch  can make 10 knots (cruising speed). Given what you 

know about WCRs, a 7-day total cruise duration, enough skilled graduate students to 

conduct cruise operations on a 24-hour-per-day basis, an unlimited number of XBT’s 

(which can be deployed when cruising at 10 knots) and 3-hours for each CTD station 

(when stopped): 

 
 (a) Design a cruise sampling “plan” (by making an accurate sketch to scale) which will 

survey the WCR’s surface & subsurface temperature, salinity, and density structure, 

the dynamic height field, and geostrophic currents measured using the “dynamic 

height anomaly” method described in Knauss on p. 28. Your sketch should contain 

the total cruise track and the locations of the WCR along with XBT and CTD 

station locations. 

(b) Explain your sampling strategy/plan in words, discussing how you are making 

specific measurements, why you are making them, and any important assumptions. 

(c) From your a priori knowledge about WCR’s, what do you expect to find from your 

measurements? 

(d) What sorts of problems should you anticipate and plan for, and how can you 

overcome them?  


