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CHAPTER 5
ELEMENTS OF DYNAMICAL OCEANOGRAPHY

Introduction
In the previous chapter, descriptive pictures of the distribution of ocean water

temperature and sdinity were used to infer the “mean” ocean circulation Matthew
Maury used ship logsto infer the principd globd ocean current patterns, like what are
shownin Figure 5.1a and Figure 5.1b. The complicated ocean current patterns are
caused by different combination of forces acting in the different regions of the world's
oceans. In order to make sense out of the gpparent chaos, we mug investigate a suite
of amplified processes that occur in the oceanin terms of their kinematics and
dynamics; the latter emphasizing the forces cause particular types of flows.
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Figure 5.1a Pacific Ocean— surface circulation. (Pickard & Emery, 1982)
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Figure 5.1b Atlantic Ocean — surface circulation. (Pickard & Emery, 1982)

Oceanic Variability

The oceanic “mean” flow pictures above are deceptive because the ocean ishighly
variable changing on time scal es ranging from seconds to millenniaand space scales
from mm to the 10000 km size of the ocean basin. Fortunately there is some order to it

al. For example, the wave energy in along-term, time series measurement record sea
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level from amogt anywhere in the world’s ocean would have a* periodogram” (Figure
5.3). That presentation shows that wave-related sealeve fluctuations range in period

(time between wave crests) from less than 1 second (for capillary waves) to periods
greater than the energetic 12 hourly and 24 hourly tides.
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Figure5.3 Surface gravity wave periodogram— the distribution of relative energy (related to wave
height squared) with respect to wave period.

The time scales of particular ocean processes (including waves) can be reated to their
particular space scales (e.g. wavelength for surface waves) in terms of adisperson
diagram as shown in Figure 5.4.
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Figureb5.4 A “dispersion diagram” relating the characteristic time scale T (in seconds) and
space scales L (in centimeters) of important ocean phenomena.
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Profiles of Ocean Wavesand Processes
Physics— Basic physical elementsincluding forcing, restoring forces
Relevance

Capillary Waves
- Physics: surfacetension/ inertia/ wind-driving
- Firgt effect of windsin wave generation
Surface Gravity Waves (short)
- Physics. gravity / inertia / wind-driving
- Mid-ocean wind waves/surface chop / shipping / off shore construction
Surface Gravity Waves (long)
- Physics: gravity / inertia / bottom topography / wind-driving or earthquake
- Surf and breskers / storm surges / tsunamis/ dangerous flooding
Internal Gravity Waves
- Physics: gravity or buoyancy / inertia / topography/ indirect wind-driving
- Energy disspation / mooring stresses/ “ dead water”
Tides
- Physics: gravity / inertia / sun and moon gravitational pull / Coriolis force
- Piloting and shipping / coastd congtruction
Interna Tides
- Physics: gravity or buoyancy / inertia / topography/ indirect wind-driving
- Internal waves a tidd periods with large vertica excursons
Panetary Waves
- Physics: gravity / buoyancy / Coriolisforce/ inertia
- Genera ocean circulation / dimate / weather
Sound Propagation
- Physics: compressibility / inertia
- Communications / echo sounding / biologica measurements
Light Propagation
- Physics: electromagnetic
- Essentid for biologica productivity (no water motions)
Turbulence, Mixing
- Physics: inertia/ buoyancy / nonlinear interaction /, friction
- Disspation of energy/ mixing of momentum and dissolved chemicds inc. O,

Estuary Flows
- Physics: gravity-buoyancy/ Corialis, tidal, and wind forcing
- Pollutant dispersd, biologicd nutrient renewd, inflow of fresh water
Upwelling (and Downwelling)
- Physics: buoyancy, local winds and currents
- Brings up nutrients / formation of water masses
Mid-Ocean Mean Flows
- Physics: buoyancy, Coriolis force, wind and heating driving, friction
- Mantaining dimate/ distributing chemicals and heet for biology
Currents
- Physics: buoyancy / Coriolisforce/ nonlinear inertia
- Trander of heat & vorticity / climate & loca weather/ biology, chemistry
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Table5.1 Characteristic time and length scal es associated with different ocean processes
and currents.

Type Time Scales Length Scales Amp
T L H

Mid Ocean “Mean” Flow 1000 km 1000 km cm/sec

Western Boundary seasonal-decadal 100 km ~ 200 cm/sec
Currents

Upwelling/Downwelling days-seasonal 100 km <1 mm/day

Continental Shelf days-months 100 km cm/sec
Currents

Estuarine Currents day-seasonal 100 km cm/sec

Turbulence (Mixing) sec cmm mm-cm/sec

Capillary Waves <0.1 sec <lcm <lcm

Short Surface 0.1s- 60s cm-km m
Gravity Waves

Long Surface sec/hr m-10's km m
Gravity Waves

Interna Gravity min-hrs m-10'skm m
Waves

Tides day 1000 km m

Internal Tides day 10-100 km 10m
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The relative importance of these different ocean phenomena to the overal ocean
vaiability can be inferred from their energy spectra— i.e. the distribution of energy
versus period of varigbility. Theform of an energy spectrum in Figure 5.4 depictstota
energy in aparticular band of periods T (i.e. process) in terms of area under the curve.
The importance of capillary wavesto overd| surface wave isindicated here. The
spectrum of dengty of energy within afixed band of periods—i.e. energy dendty —isan
dternate way to display energy spectra. After we have developed the concepts of
oceanic energy trangport and discussed the physical mechanisms associated with many
of the most important ocean phenomena, we will come back to these pictures. A

generd discussion of energy follows next.
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Figure 5.4 Variance-preserving form of an energy spectrum of the different ocean processes.
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Energy Density Spectrum
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Figure5.5 Energy density spectrum for different oceanic motions
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Forms of Energy

Energy comesin different forms induding mechanica, therma and chemical to name a
few. Mechanica energy can be divided into kinetic and potentid energy forms.

Kinetic energy (or energy of motion) of aparticle with massmis
K=1/2m(V-V)=1/2mVv? ,
where V =ui+vj+wk .

Thetime rate change of the kinetic energy of a particle can be shown to be equal to the
work rate of the forces acting upon it by considering that the aboveis

which can be rewritten as

dK _ &V g _p dF
d

m RS
dt dt

work rate

where F istheforce (or vector sum of forces) acting on the particle and T is the vector
displacement of the particle. In other words, to change the kinetic energy of a particle,
forces must do work (i.e. move) the particle. The amount of change in K equasthe
sum of the work rates in the three orthogona directions or

For afluid domain, like the ocean, we must keep track of the kinetic energy for each
fluid parcel that makes up the domain. (Remember that afluid parce has a volume that

© 2004 Wendell S. Brown 19 October 2004
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issmall enough so that its properties are homogeneous, yet large enough o that
individua water molecules are indistinguishable). If the kinetic energy per unit volume of
theith fluid parcd is

1/2r , Dv{V, - V),

where r ; Dv, isthe product of the density and volume respectively of the ith parce
then the totd kinetic energy of the whole system of parcelsis

k=8 1/2r,ov,{V, - V).
In the limit as the volume of the i parcel Dy; ® 0 , the sum above becomes the

fallowing integrd

K =%de ddy 0dz 1 (%, ¥,2) V2(X, ¥, 2) ;
Further assuming that water dengity is 1 gm/ent, then the above can be written

:% odx ody odzv2(x, Y, 2),

1 . égmcm?/sec’u, 1 .
where = r v%unﬂs%a; or —V?; units [szlsecz]
2 € om 0 2

is the kinetic energy per unit volume or energy density a thelocation x, y, z.

Potential Energy (or energy of position) isthe other form of mechanica energy.
Changesin potentid energy are dso related to work done. To see this consider the
case of aconservative force (i.e. non-disspative force, like gravity) actingon a
particle, witha mass m, asit movesdong any of the paths from point A to B as shown
inFigure 5.6.
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Figure5.6 The changein potential energy of amass m that ismoved in differential increments
of dS along a path from A to B in agravitational field.

The potentid energy U, relative to a reference devation z, isthe work done on the

particle (by the vector sum of the forces - gravity in this case) according to

B
Potentia Energy ° U ° - d8=|F|(z z,) =myz z,) ,
A
where d's isaunit vector tangent to the loca path and 6 is the acceleration due to
effective gravity. (Note that only the vertical displacement is relevant in the case of
gravity).
For a of afluid ocean domain, thetota potential energy a a particular time can, like

that for total ocean domain kinetic energy, be written as

U :é I Dvig(zi_ Zo)

or more accurately
U=o0dx ody odzr (X, Y, 2 o(z- z,)

where r (X, y,2) is the ingantaneous ocean dendty field .In such a conservative

system, potentia energy can be converted to kinetic energy reversibly (i.e., without
energy loss), according to K+U = congtant. Thefluid ocean is nearly conservative,
because disspation isrdatively small.

However, not dl of the total potential energy of the oceanic sysem is available for

© 2004 Wendell S. Brown 19 October 2004
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conversion to kinetic energy. For example, imagine a reference ocean in which dl of its
isopycnasarelevd (i.e. they lie pardld to geopotentid surfaces, see Figure 5.7). In
such areference ocean, withr ?(x, y,2) , none of the potential energy can be converted

to kinetic energy. The only available potentia energy (or AU) in the ocean is that
associated with isopycnds that are disturbed relative to the above reference state.

(a) ®)

Figureb5.7. (a) Undisturbed reference density field I R(X, Y,2) composed of isopycnals coincide

with geopotential surfaces and thus are level by definition; (b) Disturbed density field composed of
isopycnalsthat are not “level”.

Thefinite difference form of the domain tota available potentia energy is
o '
AJ =3 ribDvg(z - z,)
[

where r (X, y,2 =r (X, V,2) -r {(X, Y, 2 isadensty anomaly fidd. The more

accurate form s
AU = odx ody odz r (X, Y,2) 9(z-z,)

Thus the more relevant conservation of mechanica energy statement is
K + AU =congant . The swinging of a pendulum is agood example of the continuous

converson of potentia to kinetic energy and visaversa

© 2004 Wendell S. Brown 19 October 2004
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The Application of Newtonian Dynamicsto a Fluid Ocean

Here we apply Newton' s laws to a continuum — the fluid ocean - instead of solid
objects. Thefirg step in formulating the problemisto assume that the ocean can be
subdivided into flud parcels. Newton's Second Law of Mation for afluid relatesthe
vector sum of dl the relevant forces on afluid parcd to the resulting time-rate change of
momentum of the fluid parcel. Thisis a satement of the conservation of momentum for

the fluid parcel. Since different fluid parcel's cannot occupy the same space
simultaneoudly, we must solve Newton's 2 ™ Law subject to the constraint of the
conservation of mass (or volume). For some problems, the solution is aso subject to an
explicit condraint of the conservation of energy, including hest and mechanica energy.

The problem can be formulated mathematicaly once we choose a coordinate system,
generaly the Cartesan coordinate system shown in Figure 5.8. This coordinate system
is generdly embedded in the Earth such that the x-axis points eastward, the y-axis
northward, and locd zaxis upward; and by convention the u, v, and w velocity
components point isthe X, y and z directions respectively.

z A wk\;

[N

N

SNy
el

X

Figure 5.8. The Cartesian coordinate system is composed of the mutually perpendicular x-
(eastward), y- (northward) and z- (local upward) axes; By convention the u, v and w velocity
components are aligned with the x, y and z axes respectively.

We generdly seek to solve the problem of interest at al locations in the ocean domain,

intermsfor the time histories of the rdevant variables of the problem usudly including:
© 2004 Wendell S. Brown 19 October 2004
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- the velocity components

u=ux\y,zt)
vV =V(Xy,z1)
w = W(X,y,zt)

- the pressure and dengity fidlds

p = p(X’y’Z1t)
r=r (Xyzt)

- and the temperature and dinity fieds
T=T(Xx\y,zt)
S=98(x,y,z1)

which of course are reated to density through the equation of Sate.
Vdid solution(s) to the stated problem means that they smultaneoudy stisfy the
following
Conservation of M ass
Conservation of Momentum
Conservation of Energy (if needed)
aswdll asthe

4) Boundary and Initial Conditions

What are the conser vation of mass and momentum equations for afluid? To begin
to answer the question, we must choose one of the two approaches to represent the
problem. One approach isto use the Lagrangian representation, in which the motion of

each fluid parcd (identified by itsinitid pogtion) is described as afunction of time.
However, this approach is complicated and used only is specid circumstances. The
other approach isto use the Eulerian representation, in which the time evolution fluid

motion and properties are described at dl fixed points within a defined domain. In this
course, we will normally use the Eulerian representation.

Conservation of M ass

In deriving the conservation of mass (or volume) statement, wewill assume a steady
state syssem —i.e., no changes with time. First, determine the amount of mass transport
through avery smdl contral volume (with dimensions dx, dy, and dz) in ashort time di,

© 2004 Wendell S. Brown 19 October 2004
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asshownin Figure 5.9.

!
d
[eu&{\r ”-»,,i‘“—" : .(u+’%\ic\x)edtl
J‘:’j___.. dy
X

Figure5.9. A schematic of the x-directed masstransport through a small control volumein asmall
time dt.

The net mass transport in the x directionintimedt is
r [(u+du) -ul dy dz dt ,

where du =%dx isagmdl increment in the horizontd velocity u.
X

Thus the net x-directed mass becomes

1+ Y o) - dy dz d
x

or
Tu r dx dy dz dt
X

Likewisethe net y- directed mass is
IV ox dy dz
fy

and the net z directed mass is
W e dly x .
9z

If we can assume that:

(@ r iscondant;
(b) fludisincompressible; and
() there are no sources or sinks within the domain,

© 2004 Wendell S. Brown 19 October 2004
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then the sum of the net trangportsis

rdxdydzdt(—+ﬂ—v+ﬂw) ° 0 :
X

Ty 1z

fromwhich thedifferential form of the Continuity Equation follows

Tu, v, Iw_,
Ix Ty 1z
Using the “del operator”, defined as
Nolr+lT+lE
x Ty 1z

we can derive the vector form of the Continuity Equetion
N-V=0
which isthe called divergence of V .

The above forms of the continuity finite difference form of the continuity equetionis

Theimplications of the continuity relaion for afluid can be explored in terms of afluid
parcd asit passes through aregionin x, y, z space. Y ou are a scuba diver looking
upward at a cubica dyed water parcel at the surface as it moves from left to right dong
the y-axisin Figure 5.10. Y ou observe the parcel shortening in the x-direction, but not

in the y-direction as it moves through the control volume toward + y. Thus du for

d x
the parce isnegative. The continuity relation requires that this x-directed shortening be
compensated by a postive or+2$ +d—WE Since dv_ =0, dw must be positive. The
gy dzg dy dz

© 2004 Wendell S. Brown 19 October 2004
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observed downward stretching or ( d‘N) Is conggtent with this conclusion.

(- d2)

’l

Figure5.10. Conservation of volume as seen from below the sea surface. (Von Arx, 1974)

Conservation of Momentum

For afluid, Newton’s 2™ Law per unit volumeis
aE=3,v
at
If the dengity of a particular fluid parcd is congtant then we can write

AF=r d_V
dt

whereV = ui +v ] +wk isthetota velocity vector and& F represents the vector sum

of pressure, gravity, friction and even the Corialis forces on the fluid parce.

© 2004 Wendell S. Brown 19 October 2004
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What isC;—\: for afluid?

From an Eulerian point of viaN(jj—\t/ isthe accderation of afluid parcd asit moves

through a control volume & the point of interest with coordinatesx, y, z. If the x
veocity isu = u(x,y,zt) then asmdl changein u (i.e. du) experienced by the parcd can
be expressed

+Ju

dU = E |x, yt

Tu Tu dx+m|mdy dz.

Mt =Ty

If du occursin atime dt, then the x-directed (or eastward) component of the
acceerationis

|x,y,z dt +

d_uzﬂ+uﬂ+vﬂ+wﬂ

a qt 9q9x Ty 9z
@ (b (o (d)

The subgantid derivetive of u or % Is composed of the (a) loca accelerdtion (i.e. the

locd time rate change of u) and convective acceerations, resulting from fluid parcels
being swept by the respective component vel ocities through aflow field with spetid
gradients of u in the respective directions. In order to get a better feding for these
convective acceleration terms, consder what happens when the locd v velocity
component sweeps afluid parcd through aflow field with a positive northward gradient

of the u velocity component - u current shear 1111_u (Figure 5.11).
y

34
v,
> 2w

R

X%

Figure 5.11. The x-directed convective acceleration arising from y-directed motion (v) of aparcel
in ashear flow.
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In this case the parcel undergoes an x-directed accel eration because it isbeing

displaced northward from dower eastward (or u) flow into aregion of faster eastward

flow. This component of the accderation is due to the coupling; v% .
y

The corresponding y- and z-directed components of acceleration are

dv_‘ﬂv ﬂ+vﬂ+ fiv

FEE TR T TANET

dW ﬂw u‘ﬂw+ Tw Tw
ot qt X Ty 1z

Since — = j
dat dt at at
we can write the substantial derivativeof V' in the following vector form

ﬂ__+ N)j

For most of our purpaoses the convective accel eration contributions are gpproximeately

zero. Thus dv » v
dt qt

© 2004 Wendell S. Brown 19 October 2004
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For ces

What does& F mean for afluid?

In this course we are principaly concerned with pressure gradient forces, gravitationa
forces, frictiona forces and forces related to rotation such as the Coriolis force and

centrifugd force.

The pressure gradient force (per unit volume) is abody force which acts on afluid

volume. Consder the pressure force baance on the fluid control volumein Figure 5.12.
Remember that pressure dways acts norma (or perpendicular) to the face of the

control volume and has units of force per unit areaor (MLT%/L?). In this case, the

pressure isincreasing from left to right.

‘szdy

& ax

Figure5.12. X-directed pressure forces on afluid parcel.
The net x-directed pressure force on the control volumeis

4 B2 =[p-(p+ 1P )] dy dz
X

= TP o dyaz

9 x
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The net x-directed pressure force (per unit volume) is

PGF,=a F/dx dy dz = -% ,
X

and is called the x-directed pressure gradient force (or PGFy). Note that PGF, isthe
negative x-directed pressure gradient. A positive pressure gradient has higher
pressures & increasing X (to the right), lower pressures at decreasing x (to the left), and

under these circumstances, tends to force water to the | eft.

When they and z components of the pressure force are derived in asmilar manner, we

are able to find the total pressure gradient force per unit volume;

Thefinite difference form of the pressure gradient force

PGFy= - ( d_pr+d_p]'+d_p[(' ),
dx dy dz
where a 2-gation estimate of the x-pressure gradient is
d
—p = pz—pl/ Xo — X1.
d x

khkhkhkhkkhkhhhhhhhhhhhhhddhhhhhdhhdhddhhhhdxdxhhddddxx

Now let’s explore Newton's 2™ Law in the presence of differing combinations of the
pressure gradient and gravitational forces.

kkhkhkkkhkhkkkhhhkkhhhkkhhhkhkkhhkhkhhkhkhhkhkhhkkhhhkhhhkhhkkhkhkkkkkk,%x*%x

(1) Assumption: The pressure gradient force isthe only force acting on the water

parcels at a chosen Eulerian location.

For this case, Newton's 2™ law is

Thus when acting aone, pressure gradients accelerate fluid parcels from high pressure

© 2004 Wendell S. Brown 19 October 2004
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toward low pressure zones. The only problem with this“modd” isthat there is nothing
to keep the fluid from accelerating forever and the modd is unredigic! Thus we need

to consider opposing forces such as the gravitational force.

The gravitational force on awater parcd (or weight) per unit volume

F'=-r gk

isabody force on afluid parcd; one that is proportiona to mass and acts only

downward.

(2) Assumption: The pressure gradient and gravitationa forces are the only two forces
acting on the fluid parcel in question. Under these circumstances, Newtori s 2™ law
becomes

. = dVv - Tp-, Tp- . Tp; %
aF=r — =[-Np=-(—i+—j+—Kk)]- rgk
at x Ty Mz
PGF gravitational

®
Now assume that thereis no motion (i.e. V © 0). Thus d% =0 and we have

only a baance between the pressure gradient and gravity forces— aforce balance- in
the vertica direction only; according to

fip

-—-rg=0
1z )
or
fip
— =7
1z )

Thusthis gtatic Stuation is maintained by the exact baance between the upward loca
pressure gradient and the downward weight of the water parcel, which of courseis

motionless
© 2004 Wendell S. Brown 19 October 2004
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These hydrostatic conditions are explored further by integrating the above as follows.

Firg, since p = p(2) only, the partid derivative il becomes the total derivativei and

1z dz
the above can be written

dp
—=-rg.
dz d

Integrating the above from the sea surface (at z = 0, where p = atmospheric = p,_ ) to an
arbitrary devaion z is

P2

Q dp=-(gdz
@ 0

Evduating the integrd on the left hand Sde leads to

P(2)- p,=-Q ()9 dz.

0

Since dengity variations with depth r (z) are rdaively smdl, we can decompose it into

(D=1,

where r , isthe rdatively large mean density and r / isthe relatively small density
anomdy (i.e, r ' <<r ).

Subdtituting the above this approximation into the previous equation and integrating,
yieldsthe array of contributions to the hydrogtatic pressure p(z) at an arbitrary eevation
z
P =-r,02- ¢y 9(2) dz+p,.
(a) o (0) (©)

What are these components?

Term (), usudly the dominant contribution, is the weight of the water column

above the selected depth (i.e., —2) in a congtant density ocean;

Term (b) isthe very smdl contribution to the total hydrogtatic pressure, due to
the integrated weight of a variable dengty anomdy;
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Term (c) isthe contribution due to atmospheric pressure;

Let’'ssmplify asmuch as possible! Firgt, Term (b) < < Term () virtualy dl the
time. Since the average atmospheric pressure is about 1 atmosphere (which is
~ 1020 millibars = 10.2 decibars, where 1 bar =10° dynesicm?), Term (c) < <
Term (a), except for the shalowest depths. Therefore to a reasonable degree
of accuracy the more familiar form

p(z) =-rgz
can be used for computing hydrostatic pressure.

For
Evannla
I—I\ullr’l\l
p=-rg
r =1.025gm/cm3
Assming J ===>r g = 1.0045x10° —2"_
g =0.98x10°cms ? om’ - <

Thusat an devation z=-1m (actudly a depth of 1m):

2
pz = -1m) ~10°- 102=10° T0S
cm
p(- 1m) ~10° = = 0.1 bars (decibar)
cm

Now let’s compute the internal pressure gradient field in the fallowing suite of modd
ocean Stuations.

(A) Homogeneous Undisturbed Ocean

Given the homogeneous ocean (i.e. s, = constant) with no sea surfacetilt in Figure

5.13, what is the bottom pressure difference between stationsa and b, which are
separated laterdly by afinite disance dx.
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a 2011072 2727777720777 b

— §x —
Figureb5.13. Pressure gradient force in a homogeneous ocean no sea surfacetilt.
Sncepp = Pa, dp=p,—p.=0.

(B) Two Dimensional Homogeneous Ocean with Surface Tilt:

Consider the uniform ocean (i.e. s, = r = congtant) with surfacetilt in Figure 5.14.

T W o N T W e,

b Sx

Figure5.14 Pressure gradient force in ahomogeneous ocean with sea surface tilt.

The finite difference form of the bottom pressure gradient force is,
dp _ (pb - pa)

dx dx
g
PGF, =- =[r (dz+h)- rh
o == lr@z+h)- rhy

Pressure gradient force acts uniformly throughout water column! Thus, assuming no
lateral boundaries, the full ocean water column moves horizontaly from right to left asif
it were “downhill”. No red surprise here.
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C. Two-Layered Ocean Without Surface Tilt
Consider atwo layer ocean, with no tilt (Figure 5.15), in which a homogeneous upper

layer 1 overlies ahomogeneous lower layer 2, where r, 3 r, with r = congtant)
with surfeceftiltin Figure 5.15.

P AN AF S A B S AN Y A I Y A

.
hy
|
| 3,
——
ho

i o Y R o S S i A e
| A

- S,; o

Figureb5.15. Pressure gradient forcein atwo layer model ocean with no seasurfacetilt.

The pressure gradient force PGF, is

__dp_ (Py- P.)
dx dx
_dp_ 19

vdz)+rnl- Lrh+r (b +dz)P
_'&_-}&[rl(hl dZ_L) rzhz] dx[rlhl rZ(hZ le)]%

zi(rz' r1)dz1 = g(rZ_ rl)tanql

At depths below the dengty interface, the horizontal pressure gradient force is uniform
and in the direction from more dense to less dense water (i.e. from Ieft to right).

What is the horizontal pressure gradient above the interface?
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Friction Forces

The friction force is a surface force that is most important near boundaries such asthe
surface, bottom and coasts. Friction leads to stress which like pressure has units of

forcelarea but unlike pressure acts tangentid to fluid volume surfaces.

We can understand the friction force better if we consder the x-directed siresses acting
on the surface and bottom of afluid control volume (Figure 5.16).

Friction Force

dz o
e e
2L =3 dy
dx \
Tex

Figure 5.16 The x-directed friction forces horizontal surfaces of afluid parcel.

Asyouwill see, the tangentid friction-related stress is more complicated than the
perpendicular compression- related pressure (i.e. 9 “tensor” components versus 3
vector components). To begin wewill smplify our congderations by induding only
stresses acting on horizontad surfaces in the x direction only!

Following the approaches used above, we can write the

net x-directed friction force due to stresses on the horizontal surfaces SF," as
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Sk = g «(2) + ﬂ.&z

dz- t Zx(z)ﬁ dxdy
or

SFh = Mdzdxdy ;
1z

net x-directed friction force due to stresses on the verticad surfaces SF, as

é Mt
SF, = +—2=
g ) Ty

dy -t (y)gdxdz
u

or

SFy = Mty dy dxdz
iy

Thusthe net x-directed friction force (per unit volume) is

Ff :ﬂt zx+ﬂt yX
Mz W

and arises because of :
@ Vertical Friction - verticd gradients of the stress on horizontal surfaces;

(b) Lateral Friction - horizontal gradientsof the stress on vertica surfaces

What is the corresponding y- and z- directed friction forces?

By andlogy, the net y-directed friction force (per unit volume) is

it Tt
o Mzy My
Fy ‘ﬂz+ﬂx

and the net z-directed friction force (per unit volume) is

f :M+h
S Y
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Pseudo Forces

An observer in arotating frame of reference such asaturning car will fed a* centrifuga
force’ pushing them outward. An observer waking on a merry-go-round will fed a
Coriolis force pushing them to the right of the direction in which they are waking.
However, these examples are not true forces in that they are not observed asforcesin

an inertid frame of reference (i.e. anon-accderating frame of reference). To an

observer in an inertid frame of reference, what appear to be forces to an observer in an
accderaing frame of reference, are redlly accel erations associated with the rotating (i.e.

accelerating) frame of reference.

To gain agreater gppreciation for these concepts consder asmpler Stuation. Consder
the case in which Joe, who is standing on the train sation platform, throws a briefcase
to Moe, who has forgotten it and is dready on the on the departing train. The questions
are how do Joe and Moe observe the dynamics of thetrgjectory of the briefcase (i.e.
the particlein Figure 5.17)?

J—oe Packrcle M ce
*-—> :
fixed X > ’x,
Coordinale] —x—
5‘36'\-9.\'\4 :
s = s(t) —>

hr\ovu'nﬂ Coovrainaxe 53&5—0\««

Figure5.17. Particle motion as seen by afixed (Joe) and moving (Moe) observer.

Thisisaone-dimengord Stuation in which is Joeisin afixed frame of reference and
messures horizontal postionsintermsof x rdative to the fixed platform. Moeisina
moving frame of reference and measures horizontal postionsintermsof X' relativeto

the moving train. The pogition law relating the two coordinate systems is

X=Xx(+s,
where sis the distance from the train station to the moving train.
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Given the pogtion law, what is the accleration of the particle (i.e. briefcase) as

determined in both frames of reference?

Differentiating the pogtion law twice gives

d?x _ dzxﬂ:+ d’s
dt®  dt®  dt®

Thus, if elther (1) s= congtant or (2) s= ut for a constant velocity u, then acceleration is
the same in both frames of reference.

2

However, if s=% for acongtant (i.e. Moe is accelerating relative to Joe), then

2 2
d’x _d X¢+a

a2 dt?

and the * observed “ accelerations of the briefcase are different in the two systems. To
determine the dynamica implications, apply Newton's Second Law in the two systems.

The tota externd forces on the briefcase in either system areé F . Thusin Jo€'s
fixed sysem Newton's Second Law is:

d?x

2

aF,=m

However, Newton's 2nd Law in Mo€' s sysemis:
d*x¢
dt?

Thusin Mo€ s system, the train’ s times the mass of the briefcase is a pseudo-force (-

aF,-ma=m

ma) in Moe's system that is needed to explain the true dynamics of the briefcase as it
flies from the platform to Moe' s waiting hands.
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The Coriolis Force

How do the above ideas apply to the Earth? Because the Earth isrotating (i.e.
accderding) reative to theinertid frame of reference fixed to the stars, we can expect
that accelerations arigng out of this relative motion will gppear as pseudo-forcesin a
coordinate system fixed to the earth. The Corialisforce is one such *pseudo-force.”

To determine the north-south Coriolis effect on the ocean, consder the motion of a
fluid parcd moving eestward with a speed u dong aline of laitude, f , (Figure 5.18).

A8

| of //"\\ C
x*

Figure 5.18. Components of the tota centrifugal force on a water parcel.

The tangentia speed of the Earthis
V = Wr =WR cosf

where W is the Earth rotation rate; R isthe earth radius, and r is radius of gyration.
The magnitude of the radia centrifuga force per unit volume on the water parcd is

V+u,’

=)

c=r (

The horizontal component of cis

(V+u)®
r

ch="r sinf
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rv2anf +r2‘\/usinf N ru’sanf

r r r
centrifugd Coriolis addedcentrifugd
forceat rest; " force' forcedueto parcel
balanced by motionnor mallyvery
earthsellipicity small comparedto
Coriolis

Thusthe locdl, horizontd, northward component of the Coriolis force on the water
parcd for this eastward moving parce is
= Coriolis _ I 2Wru snf

y =r2Wsanfu
r
=rfu (southward)
or
F = rfu (northward)

y

where f =2Wdan f .

The east-west Corialis effect on the ocean can be shown through conservation of
angular momentum arguments, that a water parcel moving northward at +v, will be
“forced” eastward by aforce per unit volume of

I:X(:orioIiS: r 2Wsanf v=rfv (eastward)

Thus, thetotal Corialis force acting in the horizontd planeis
gCorolisy, v fv i -1 fu j.
Kok kK k Kok ok ok ko k ko ok ok ok ok ok ok ok ko ok ko ko ko ok ok ok kK
The derivation of the full Coriolisforcein Appendix B shows that
8 Foe = & Fro + MRWX Vo) + M(Wx WX T)

or

o o — — _
A Fot = Frot~ Feoriolis™ Fcentrifugal 1
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where W isthe Earth rotation rate; & E,, arethe forces as seen by an observer in an

inertid frame of reference; & F,,, and v, aretherespective forces and velocity
“seen’ by an observer in the rotating frame of reference.

Thusin terms of the pseudo-forces - Fyiis@d = Feenyiruga 1N the rotating frame of

reference:
a lErot =a I_fe(t + _FCorioIis+ _Fcentrifugal '

The vector form of the Coriolisforceis

e

F coriois = I (fv- fcotf w)i +r (- fu)j +r (f cotf u)k

Thefull vector form of the Coriolis force can be smplified by comparing etimates of
the different terms usng “typical” oceanic quantities, namely
1) horizonta velocity difference; V

2) horizontd length scde; L 100 m < L < 1000 km
3) verticd veocity difference; W
4) verticd length scae H; 1km<H<10km

Fird, compare the relaive szesof u, v and w. Thiscan be done by “scaling” thefinite
difference form of the continuity equation such that;

_+_:O

H L

which implies that
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that isthe verticad velocity istypicaly diminished relative to U by the agpect ratio of the
ocean H/L, which ranges 0.01 < H/L <0.10. Thus

Wa(0.10- 0.00U
whichmeans that W is small compared to U or W << U.

Therefore to a good approximation, the x-directed Coriolis component is

FXCorioIis =r (fV- f cotf W) » rfv

How important isthe vertical Coriolis component, F°°" =r f cotf u
compared to the gravitationa component? First, away from the equator for typica
latitudes, cotf isof order 1. So what isthe sze of fu? Edimating

2W=1.5x 10" rad/sec

u=10-100 cm/sec
gives

fu=15x10%t01.5x% 10'3(:—m2
Sec

which is very small compared to g = 980 cnv/sec?.

Thusinmost cases, F-"" =r f cotf u»0 incompaisontor g.

Where do the above approximations break down?

With these gpproximations, the rdatively complex Coriolis formulation is reduced to our
origind estimate (pg 32)

goorolisy r fv i -1 fu j.
withf =2Wsan f , which from Figure 5.19, is twice the loca overhead rotation rate
orf =2W,.
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P (\arrtwde)

Figure5.19. Earthrotation rate\W componentsin aloca Cartesian coordinate system at
latitudef ., where W, = Wdnf = f /2

Of course, that overhead rotation rate varies with |aitude from + W at the north pole to

- W at the south pole asillustrated in Figure 5.19

Figure 5.20. Thelatitudinal variation of the overhead Earth rotation rate W, = Wanf asseen
by afixed observer.
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kkhkhkkkhhkkkhhhkkhhhkkhhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhkhhkkhkhkkkkkkx*x%x

With the above considerations we can write the following compact vector form of

Newton's 2™ Law per unit volume for afluid ocean

f—

r ?j—\t/:-r(ZVVxV)-Np-r ok +E'

as well asthe following component form of this equation, in which we have neglected
the lessimportant Coriolisterms

du_p, 10,
dt r x
Z—\f’;%%-gw;

At o Nty U0 &ty ety oty efit,,u0

where F; = teo—(L Fy = fe L Fi= g -
éﬂz gy by §‘HZ Emx U5 8y Eax b

The latter will be very useful will be more useful for exploring dynamic baances of some

of the more important oceanic processes.
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Chapter 5- PROBLEM S

Problem 51 Dimensional Analysisof Ocean Processes

a) Wave Speed: Given thefallowing Stuation: deep, homogeneous (constant
density) water of densityr [M/L?|; force of gravity g|L/T?| ; and wave length
¢[L]where the [ ] indiicate the generalized dimensions of time, T, length, L, and

mass, M.
What must be the formula for the wave period ?.............. or phase speed?

Surface Waves

time history of water height (ht)

— perlod time

b) Geogtrophy: For many ocean flows only thevelocttyuSTH ,Coridlis coefficient

pressure difference ? p8 Y over adistance /[L] , and densty

STH H

r [M / L3J are important for the dynamlcs
How can the velocity of the flow be estimated from the other data?

C) Hydrodatic: Important pressure differences Dp[M /LT2J arerelated to the
density anomaly dr [M /L?| through gravity, g|L/T2|and the depth HIL].
How?

d) Find an expression for u, by diminaing Dp in the results from (b) and (c). Then
ven:
d dar = 10 gm/en?
1 gm/ent
10" 1/sec
980 cnm/sec?
3000 m
300 km

I n

what is v for these circumstances?
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Problem 5.2 Kinetic Energy
Congder the following estimate of oceanic kinetic energy. The mode oceanis5 km

deep and currents extend uniformly to the bottom. All water within each section is

moving a the indicated velocity.

160 km
4000 km

?m/sec / /Zcm/sec /

a) What isthe totd kinetic energy KE of the system expressed in ergs and joules?

Hint: The system kinetic energy isKE = S 1/2M,V?, where M; ©
I

mass of the i partide; V' © velodity of thei™ partide; and S means
|

summetion over dl particles.

b) How much heat energy (in caories) would be rdleased if al the system kinetic
energy were converted to heat?

How many minutes of sunlight a 0.25 ly/min would supply this much hegt to the

ocean surface?
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Problem 5.3 Estimation of Vertical Velocity

The mean horizontd current components (crm/sec) in the upper 50 m of an ocean have
been averaged over five-degree squares and are shown in the figure below.
a) Edtimate the verticd velocity at 50 m in each of the five-degree squares.

b) What assumption have you made, and why may your answer be erroneous?

N7

T s IR
13 15

30 25

5.6 x 10° cm

v

«— 5X107cm — s

Figure: Horizonta current components, averaged for four 5-degree squares.
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Problem 5.4 Horizontal Pressure Gradient Force

Bdow is a schematic representation of the geometry and pressure field in alongitudina
section of the Strait of Bosporus. The ocean surface devation a d z, above the mean
sealeve (a z = 0) coincides with the atmospheric pressure (P,) isobar. The dopes of
thisand the isobars a depth (i.e. P, P,, Ps, €tc.) are grossly exaggerated compared to
the dope of the bold, dashed interface between the low density (r g) Black Seaand

the high density (r ) Sea of Marmara waters.

A y N z
a b
ﬂ% z
S 0
ety T Tl P, ---
A S 2 o - Pyoos
interface ST T T Ps &
——————————————— ':'—'1'J\---r.;,-"—':_?———--------------—- Py -~- CZ
----------- e LA T 2

—--__~_‘El>__~ ——__—_______".'.:.'"'"‘""-nr.?.__.__ Ps --< L
ST e T e L P T

Sea of

| (After Tolmazin) |

Nevertheless these dopes are red because of the dengty differencesin Seaof Marmara
(L.020< r < 1.025 gm/enT) and the Black Sea (1.012 < r g < 1.016 gm/cn).

Show that the pressure gradient forces at the different depths are consistent with the
flow directions as pictured.

a) Derivetherdation for the horizonta pressure gradient force (PGF) under these

circumstances from the definition:
PGF =-dp/dx=- (R, - P,)/L :
where the subscripts aand b refer to the two sectionsin the picture above.

b) Evauate the PGF a depthsz =0, -z, -z, and -z; repectively.

c) What are the dopes of isobars P, Ps, and Ps respectively, assuming
r m=1.025 gm/en? and r g =1.012 gm/cnt®
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Problem 55 Pseudo Forces

a) Describe as briefly as possible the distinction between centrifugal and Coriolis
forces.
b) Why are these forces called pseudo forces?

c) What is suggested by the fact that these pseudo forces and the gravitetiona
forces are both proportional to mass?

d) What isthe centrifugal force exerted on atypical 50 kg person at latitude
43°N? What isthe vaue of the Coriolis parameter f in units of sec™? If the
person runs the 30 m dash in 10 sec, what isthe Coriolis force fdt by the
person? What is the respective ratios of these two “forces’ to the person's
weight, mg?

€) Anarcraft flying eestward a u = 1000 nautical miles’hour &t latitude 60°N
rlative to a rotating earth. Neglecting second order effects (e.g. Lf), compute
the deflection of loca apparent vertical as observed by a person on the airplane.
(Recdll the andysis of Chapter 1 in the notes). How much does the inclusion of

the second order term change this result?
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